2.已知矩陣M=$[\begin{array}{l}{3}&{6}\\{2}&{2}\end{array}]$,則M的特征值為-1或6.

分析 先根據(jù)特征值的定義列出特征多項式,令f(λ)=0解方程可得特征值

解答 解:矩陣M的特征多項式為f(λ)=$|\begin{array}{l}{λ-3}&{-6}\\{-2}&{λ-2}\end{array}|$=(λ+1)(λ-6)
令f(λ)=0,解得λ=-1或6;
故答案為-1或6.

點評 本題主要考查矩陣特征值的計算等基礎(chǔ)知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l:kx+y+1+2k=0(k∈R).
(1)證明:直線l過定點;
(2)若直線l交x軸負(fù)半軸于A,交y軸負(fù)半軸于B,記△AOB的面積為S,求S的最小值,并求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.要得到y(tǒng)=sin2x的圖象,只需將y=sin(2x-$\frac{π}{4}$)的圖象是( 。
A.向右平移$\frac{π}{8}$B.向左平移$\frac{π}{8}$C.向右平移$\frac{π}{4}$D.向左平移$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.E、M、N依次是正方體ABCD-A1B1C1D1的棱AB、AA1、A1D1的中點,則平面EMN與面ABCD所成的二面角的大小為arctan$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)a1,a2,a3為正數(shù),求證:$\frac{{a}_{1}{a}_{2}}{{a}_{3}}$+$\frac{{a}_{2}{a}_{3}}{{a}_{1}}$+$\frac{{a}_{3}{a}_{1}}{{a}_{2}}$≥a1+a2+a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,△PAD是等邊三角形,底面ABCD是邊長為2的菱形,∠BAD=60°,E是AD的中點,F(xiàn)是PC的中點.
(1)求證:EF∥平面PAB;
(2)求直線EF與平面PBE所成角的余弦值.
(3)求平面PAD與平面PBC的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知正三棱柱ABC-A1B1C1的底面邊長是2,D是側(cè)棱CC1的中點,直線AD與側(cè)BB1C1C所成的角為45°.
(1)求此正三棱柱的側(cè)棱長;
(2)求二面角A-BD-C的平面角的正切值;
(3)求點C到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知點A(2,0)B(0,-4)
(1)寫出△AOB的外接圓方程
(2)設(shè)直線l:3x-4y-1=0與△AOB的外接圓交于A,B兩點,求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$f(x)=lnx-ax+\frac{1-a}{x}-1(a∈R)$.
(1)當(dāng)$0<a<\frac{1}{2}$時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=x2-2bx+4.當(dāng)$a=\frac{1}{4}$時,若對任意$x∈[\frac{1}{e},e]$,存在x2∈[1,2],使f(x1)=g(x2),求實數(shù)b取值范圍.

查看答案和解析>>

同步練習(xí)冊答案