已知a∈R,設(shè)函數(shù)f(x)=
1
3
x3-
a+1
2
x2+ax

( I) 若a=2,求曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程;
( II)求函數(shù)f(x)在區(qū)間[2,3]上的最大值.
( I)a=2時(shí),f(x)=
1
3
x3-
3
2
x2+2x
,所以f′(x)=x2-3x+2
所以f′(3)=2,而f(3)=
3
2
,所以切線方程為y-
3
2
=2(x-3)

y=2x-
9
2
(一般式:4x-2y-9=0)
( II)f′(x)=x2-(a+1)x+a=(x-1)(x-a)
當(dāng)a<1時(shí),函數(shù)f(x)在區(qū)間[2,3]上單調(diào)遞增,故f(x)max=f(3)=
9
2
-
3
2
a

當(dāng)a=1時(shí),函數(shù)f(x)在區(qū)間[2,3]上單調(diào)遞增,故f(x)max=f(3)=
9
2
-
3
2
a

當(dāng)a>1時(shí),
①1<a≤2時(shí),在[2,3]上f′(x)>0,即f(x)在區(qū)間[2,3]上單調(diào)遞增,故f(x)max=f(3)=
9
2
-
3
2
a

②2<a<3時(shí),在[2,a)上f′(x)<0,在(a,3]上f′(x)>0,故f(x)max=max{f(2),f(3)},而f(2)=
2
3
,f(3)=
9
2
-
3
2
a
,
所以當(dāng)2<a<
23
9
時(shí),f(3)>f(2),故f(x)max=f(3)=
9
2
-
3
2
a

當(dāng)
23
9
≤a<3
時(shí),f(3)<f(2),故f(x)max=f(2)=
2
3

③a≥3時(shí),在[2,3]上f′(x)≤0,即f(x)在區(qū)間[2,3]上單調(diào)遞減,
故f(x)max=f(2)=
2
3

綜上所述:f(x)max=
9
2
-
3
2
a(a≤
23
9
)
2
3
(a>
23
9
)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,設(shè)函數(shù)f(x)=
1
3
x3-
a+1
2
x2+ax

( I) 若a=2,求曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程;
( II)求函數(shù)f(x)在區(qū)間[2,3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-x2

(1)求f(x)的極值;
(2)已知a∈R,設(shè)函數(shù)g(x)=
4
3
x3+ax2+(a+1)x
的單調(diào)遞減區(qū)間為B,且B≠∅,函數(shù)f(x)的單調(diào)遞減區(qū)間為A,若B⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=數(shù)學(xué)公式
(1)求f(x)的極值;
(2)已知a∈R,設(shè)函數(shù)數(shù)學(xué)公式的單調(diào)遞減區(qū)間為B,且B≠∅,函數(shù)f(x)的單調(diào)遞減區(qū)間為A,若B⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州二中高三(下)2月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知a∈R,設(shè)函數(shù)
( I) 若a=2,求曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程;
( II)求函數(shù)f(x)在區(qū)間[2,3]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案