【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為為參數(shù)),直線(xiàn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

1)求直線(xiàn)l和曲線(xiàn)C的極坐標(biāo)方程;

2)若直線(xiàn)與直線(xiàn)l相交于點(diǎn)A,與曲線(xiàn)C相交于不同的兩點(diǎn)M,N.的最小值.

【答案】1;(2.

【解析】

(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;

(2)利用極徑的應(yīng)用和三角函數(shù)關(guān)系式的變換及正弦型函數(shù)的性質(zhì)的應(yīng)用和基本不等式的應(yīng)用求出結(jié)果.

1)由直線(xiàn)得其極坐標(biāo)方程為.

,(為參數(shù)).,

,,,

則其極坐標(biāo)方程為.

2)由題意,設(shè),,

代入

,

,

與曲線(xiàn)C相交于不同的兩點(diǎn)M,N,可知.

代入

.

,

當(dāng)且僅當(dāng),

時(shí),等號(hào)成立,的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為平行四邊形,且,點(diǎn)E,F為平面外兩點(diǎn),,

1)證明:;

2)若,求異面直線(xiàn)所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為貫徹落實(shí)黨中央全面建設(shè)小康社會(huì)的戰(zhàn)略部署,某貧困地區(qū)的廣大黨員干部深入農(nóng)村積極開(kāi)展精準(zhǔn)扶貧工作.經(jīng)過(guò)多年的精心幫扶,截至2018年底,按照農(nóng)村家庭人均年純收入8000元的小康標(biāo)準(zhǔn),該地區(qū)僅剩部分家庭尚未實(shí)現(xiàn)小康,20196月,為估計(jì)該地能否在2020年全面實(shí)現(xiàn)小康,統(tǒng)計(jì)了該地當(dāng)時(shí)最貧困的一個(gè)家庭201916月的人均月純收入,作出散點(diǎn)如下:

根據(jù)盯關(guān)性分析,發(fā)現(xiàn)其家庭人均月純收入與時(shí)間代碼之間具有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系(記20191月、2……分別為,,,依此類(lèi)推),由此估計(jì)該家庭2020年能實(shí)現(xiàn)小康生活.但20201月突如其來(lái)的新冠肺炎疫情影響了奔小康的進(jìn)展,該家庭2020年第一季度每月的人均月純收入只有201912月的預(yù)估值的

1)求關(guān)于的線(xiàn)性回歸方程;

2)求該家庭20203月份的人均月純收入;

3)如果以該家庭3月份人均月純收入為基數(shù),以后每月增長(zhǎng)率為,問(wèn)該家庭2020年底能否實(shí)現(xiàn)小康生活?

參考數(shù)據(jù):,

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體是正方體,,分別是棱,的中點(diǎn),點(diǎn)是棱上的動(dòng)點(diǎn),過(guò)點(diǎn),的平面與棱交于點(diǎn),則以下說(shuō)法不正確的是( )

A.四邊形是平行四邊形

B.四邊形是菱形

C.當(dāng)點(diǎn)從點(diǎn)往點(diǎn)運(yùn)動(dòng)時(shí),四邊形的面積先增大后減小

D.當(dāng)點(diǎn)從點(diǎn)往點(diǎn)運(yùn)動(dòng)時(shí),三棱錐的體積一直增大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖暅原理指出:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等,例如在計(jì)算球的體積時(shí),構(gòu)造一個(gè)底面半徑和高都與球的半徑相等的圓柱,與半球(如圖①)放置在同一平面上,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐后得到一新幾何體(如圖②),用任何一個(gè)平行于底面的平面去截它們時(shí),可證得所截得的兩個(gè)截面面積相等,由此可證明新幾何體與半球體積相等.現(xiàn)將橢圓所圍成的平面圖形繞y軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體,類(lèi)比上述方法,運(yùn)用祖暅原理可求得其體積等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,且.過(guò)橢圓的右焦點(diǎn)作長(zhǎng)軸的垂線(xiàn)與橢圓,在第一象限交于點(diǎn),且滿(mǎn)足.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若矩形的四條邊均與橢圓相切,求該矩形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年,新型冠狀病毒引發(fā)的疫情牽動(dòng)著億萬(wàn)人的心,八方馳援戰(zhàn)疫情,眾志成城克時(shí)難,社會(huì)各界支援湖北共抗新型冠狀病毒肺炎,重慶某醫(yī)院派出3名醫(yī)生,2名護(hù)士支援湖北,現(xiàn)從這5人中任選2人定點(diǎn)支援湖北某醫(yī)院,則恰有1名醫(yī)生和1名護(hù)士被選中的概率為(

A.0.7B.0.4C.0.6D.0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】CPI是居民消費(fèi)價(jià)格指數(shù)的簡(jiǎn)稱(chēng),是一個(gè)反映居民家庭一般所購(gòu)買(mǎi)的消費(fèi)品和服務(wù)項(xiàng)目?jī)r(jià)格水平變動(dòng)情況的宏觀(guān)經(jīng)濟(jì)指標(biāo).同比一般情況下是今年第n月與去年第n月比;環(huán)比,表示連續(xù)2個(gè)統(tǒng)計(jì)周期(比如連續(xù)兩月)內(nèi)的量的變化比.如圖是根據(jù)國(guó)家統(tǒng)計(jì)局發(fā)布的20194—20204月我國(guó)CPI漲跌幅數(shù)據(jù)繪制的折線(xiàn)圖,根據(jù)該折線(xiàn)圖,則下列說(shuō)法正確的是(

A.20201CPI同比漲幅最大

B.20194月與同年12月相比較,4CPI環(huán)比更大

C.20197月至12月,CPI一直增長(zhǎng)

D.20201月至4CPI只跌不漲

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】美團(tuán)外賣(mài)和百度外賣(mài)兩家公司其“騎手”的日工資方案如下:美團(tuán)外賣(mài)規(guī)定底薪70元,每單抽成1元;百度外賣(mài)規(guī)定底薪100元,每日前45單無(wú)抽成,超出45單的部分每單抽成6元,假設(shè)同一公司的“騎手”一日送餐單數(shù)相同,現(xiàn)從兩家公司個(gè)隨機(jī)抽取一名“騎手”并記錄其100天的送餐單數(shù),得到如下條形圖:

(Ⅰ)求百度外賣(mài)公司的“騎手”一日工資(單位:元)與送餐單數(shù)的函數(shù)關(guān)系;

(Ⅱ)若將頻率視為概率,回答下列問(wèn)題:

①記百度外賣(mài)的“騎手”日工資為(單位:元),求的分布列和數(shù)學(xué)期望;

②小明擬到這兩家公司中的一家應(yīng)聘“騎手”的工作,如果僅從日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案