2.等差數(shù)列{an}中,a1=1,a7=-23,若數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和為-$\frac{14}{55}$,則n=(  )
A.14B.15C.16D.18

分析 設等差數(shù)列{an}的公差為d,利用通項公式可得an=5-4n.可得$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{4}$$(\frac{1}{4n-5}-\frac{1}{4n-1})$,即可得出.

解答 解:設等差數(shù)列{an}的公差為d,∵a1=1,a7=-23,
∴-23=1+6d,解得d=-4.
∴an=1-4(n-1)=5-4n.
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(5-4n)(1-4n)}$=$\frac{1}{4}$$(\frac{1}{4n-5}-\frac{1}{4n-1})$,
∴數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和=$\frac{1}{4}[(-1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{7})$+…+$(\frac{1}{4n-5}-\frac{1}{4n-1})]$
=$\frac{1}{4}(-1-\frac{1}{4n-1})$,
令$\frac{1}{4}(-1-\frac{1}{4n-1})$=-$\frac{14}{55}$,
則n=14.
故選:A.

點評 本題考查了等差數(shù)列的通項公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知x1=3-2i是實系數(shù)一元二次方程x2+px+q=0的一個根.
(1)求方程的另一個根及p、q的值;
(2)求x12+x22的值;
(3)求$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的值;
(4)求x13+x23的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知點F1、F2分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦點,過F1且垂直于x軸的直線與橢圓交于 M、N兩點,若△M NF2為等腰直角三角形,則該橢圓的離心率e為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-1+\sqrt{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.光線從A(-2,3)出發(fā),經(jīng)直線x-y+10=0反射,反射光線經(jīng)過點C(1,2),求入射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,C∈R),若函數(shù)f(x)的最小值是f(-1)=0,f(0)=1且對稱軸是x=-1,g(x)=$\left\{\begin{array}{l}{f(x)(x>0)}\\{-f(x)(x<0)}\end{array}\right.$
(1)求g(2)+g(-2)的值;
(2)求f(x)在區(qū)間[t,t+2](t∈R)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如果函數(shù)f(x)滿足:對任意實數(shù)a,b都有f(a+b)=f(a)f(b),且f(1)=1,則$\frac{f(2)}{f(1)}+\frac{f(3)}{f(2)}+\frac{f(4)}{f(5)}+…+\frac{f(2015)}{f(2014)}$=2014.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在平面直角坐標系xOy中,將曲線$\left\{\begin{array}{l}{x=4cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù))上的每一點縱坐標不變,橫坐標變?yōu)樵瓉淼囊话耄缓笳麄圖象向右平移1個單位,最后橫坐標不變,縱坐標變?yōu)樵瓉淼?倍得到曲線C1,以射線Ox為極軸建立極坐標系,曲線C2的極坐標方程是ρ=4sinθ.
(1)分別寫出曲線C1,C2的普通方程;
(2)求C1和C2的公共弦的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,已知AB是圓O的直徑,AB=4,EC是圓O的切線,切點為C,BC=1,過圓心O做BC的平行線,分別交EC和AC于點D和點P,求OD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設a是第三象限角,cosa=-$\frac{3}{5}$,則tan$\frac{a}{2}$=( 。
A.-3B.-2C.2D.3

查看答案和解析>>

同步練習冊答案