【題目】如圖是正方體的平面展開圖,在這個正方體中,有以下四個命題:平面ADNE;②平面ABFE;③平面平面AFN;④平面平面NCF.其中正確命題的序號是( )

A.②③B.①②③C.②③④D.①②③④

【答案】A

【解析】

把正方體的平面展開圖還原成正方體ABCDEFMN,得出BM∥平面ADNE,判斷①錯誤;
由平面DCMN∥平面ABFE,得出CN∥平面ABFE,判斷②正確;
BDFN,得出BD∥平面AFN,同理BM∥平面AFN,證明平面BDM∥平面AFN,判斷③正確;
BDFN,BECN,且BDBEB,證明平面BDE∥平面NCF,判斷④錯誤.

解:把正方體的平面展開圖還原成正方體ABCDEFMN,如圖1所示;

對于,平面BCMF∥平面ADNE,BM平面BCMF,

BM∥平面ADNE錯誤;

對于,平面DCMN∥平面ABFE,CN平面DCMN,

CN∥平面ABFE,正確;

對于,如圖2所示,

BDFN,BD平面AFN,FN平面AFN

BD∥平面AFN;

同理BM∥平面AFN,且BDBMB,

∴平面BDM∥平面AFN,正確;

對于,如圖3所示,同③可得平面BDE∥平面NCF,錯誤.

綜上,正確的命題序號是②③.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】研究變量,得到一組樣本數(shù)據(jù),進行回歸分析,有以下結(jié)論

①殘差平方和越小的模型,擬合的效果越好;

②用相關(guān)指數(shù)來刻畫回歸效果,越小說明擬合效果越好;

③線性回歸方程對應(yīng)的直線至少經(jīng)過其樣本數(shù)據(jù)點中的一個點;

④若變量之間的相關(guān)系數(shù)為,則變量之間的負相關(guān)很強.

以上正確說法的個數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形周長為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點,且以為直徑的圓過橢圓的右頂點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的角所對的邊份別為,且

1求角的大小;

2,求的周長的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一矩形鋼板ABCD缺損了一角(如圖所示),邊緣線OM上每一點到點D的距離都等于它到邊AB的距離.工人師傅要將缺損的一角切割下來使剩余部分成一個五邊形,若AB=1m,AD=0.5m,則五邊形ABCEF的面積最大值為____m2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了推行“智慧課堂”教學(xué),某老師分別用傳統(tǒng)教學(xué)和“智慧課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進行教學(xué)實驗,為了比較教學(xué)效果,期屮考試后,分別從兩個班級屮各隨機抽取20名學(xué)生的成績進行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.

分數(shù)

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

(1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷“成績優(yōu)良與教學(xué)方式是否有關(guān)”?

甲班

乙班

總計

成績優(yōu)良

p>成績不優(yōu)良

總計

附: .

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采川分層扣樣的方法扣取8人進行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中, ).

(1)當時,若在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍;

(2)當時,是否存在實數(shù),使得當時,不等式恒成立,如果存在,求的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,函數(shù)的極大值為,求實數(shù)的值;

(2)若對任意的上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知四棱錐PABCD的底面ABCD是平行四邊形,PA面ABCD,M是AD的中點,N是PC的中點.

(1)求證:MN面PAB;

(2)若平面PMC面PAD,求證:CMAD.

查看答案和解析>>

同步練習(xí)冊答案