已知函數(shù))的最小正周期為
(Ⅰ)求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)將函數(shù)的圖象向左平移個單位,再向上平移個單位,得到函數(shù)的圖象.求在區(qū)間上零點(diǎn)的個數(shù).

(Ⅰ);(Ⅱ)20.

解析試題分析:(Ⅰ)根據(jù)二倍角公式將原式化簡成,而周期,則,
從而得出的解析式,將當(dāng)成一個整體,則有
,解得,故所以函數(shù)的單調(diào)增區(qū)間是
. (Ⅱ)將函數(shù)的圖象向左平移個單位,再向上平移1個單位,得到
的圖象,即,令,得:,
易知每個周期上恰好有兩個零點(diǎn),恰為個周期,故上有個零點(diǎn).
試題解析:(Ⅰ)由題意得


由周期為,得.   得
由正弦函數(shù)的單調(diào)增區(qū)間得
,得
所以函數(shù)的單調(diào)增區(qū)間是
(Ⅱ)將函數(shù)的圖象向左平移個單位,再向上平移1個單位,
得到的圖象,所以
,得:
所以函數(shù)在每個周期上恰有兩個零點(diǎn),
恰為個周期,故上有個零點(diǎn).
考點(diǎn):1.三角函數(shù)的化簡與性質(zhì)應(yīng)用;2.三角函數(shù)的圖像變換;3.函數(shù)的零點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,且,
設(shè),的圖象相鄰兩對稱軸之間的距離等于
(1)求函數(shù)的解析式;
(2)在△ABC中,分別為角的對邊,,,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若的值;
(2)求函數(shù)最小正周期及單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(Ⅰ)求的值;
(Ⅱ)求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)求的最大值和最小正周期;
(2)若,是第二象限的角,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)是函數(shù)圖象上的任意兩點(diǎn),若時,的最小值為,且函數(shù)的圖像經(jīng)過點(diǎn)
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)在中,角的對邊分別為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的最小正周期;
(2)求在區(qū)間上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導(dǎo)函數(shù),F(x)=f(x)f′(x)+f2(x)
(Ⅰ)求F(x)的最小正周期及單調(diào)區(qū)間;
(Ⅱ)求函數(shù)F(x)在上的值域;
(Ⅲ)若f(x)=2f′(x),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的最小正周期和最值;
(2)求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案