已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[0,
π
2
]
(1)求
a
b
及|
a
+
b
|(結(jié)果化為最簡形式)
(2)若f(x)=
a
b
-2|
a
+
b
|的最大值和最小值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:(1)利用數(shù)量積的坐標(biāo)運(yùn)算、模的計(jì)算公式、倍角公式即可得出;
(2)利用數(shù)量積運(yùn)算、二次函數(shù)的單調(diào)性、余弦函數(shù)的單調(diào)性即可得出.
解答: 解:(1)
a
b
=cos
3x
2
•cos
x
2
-sin
3x
2
sin
x
2
=cos2x,|
a
|
=
cos2
3x
2
+sin2
3x
2
=1,同理可得|
b
|
=1.
∴|
a
+
b
|=
a
2
+
b
2
+2
a
b
=
2+2cos2x
4cos2x
,
∵x∈[0,
π
2
],∴|
a
+
b
|=2cosx.
(2)f(x)=
a
b
-2|
a
+
b
|=cos2x-4cosx=2cos2x-4cosx-1=2(cosx-1)2-3,
∵x∈[0,
π
2
],∴cosx∈[0,1].
∴當(dāng)cosx=0時,f(x)取得最大值-1,當(dāng)cosx=1時,f(x)取得最小值-3.
點(diǎn)評:本題考查了數(shù)量積的坐標(biāo)運(yùn)算、模的計(jì)算公式、倍角公式、二次函數(shù)的單調(diào)性、余弦函數(shù)的單調(diào)性,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

半徑為R的球,其內(nèi)接正方體的表面積為( 。
A、4R2
B、6R2
C、8R2
D、10R2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A、B、C為△ABC的三內(nèi)角,且其對邊分別為a、b、c,若
m
=(-cos
A
2
,sin
A
2
),
n
=(cos
A
2
,sin
A
2
),且
m
n
=
1
2

(Ⅰ)求角A;
(Ⅱ)若a=
3
,求2b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)l的方程為(m2-2m-3)x+(2m2+m-1)y=2m-6,根據(jù)下列條件分別確定m的值.
①x軸上的截距是-3;
②l的傾斜角為
π
4
;
(Ⅱ)求經(jīng)過直線l1:x+y+1=0,l2:5x-y-1=0的交點(diǎn),并且與直線3x+2y+1=0垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,0),B(0,1),C(sinθ,cosθ)
(1)若|
AC
|=|
BC
|,求tanθ的值;
(2)若(
OA
+2
OB
)•
OC
=1,其中O為坐標(biāo)原點(diǎn),求sin2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1,x2是關(guān)于x的一元二次方程4kx2-4kx+k+1=0的兩個實(shí)數(shù)根.
(1)是否存在實(shí)數(shù)k,使(2x1-x2)(x1-2x2)=
1
2
成立?若存在,求出k的值;若不存在,說明理由;
(2)求使
x1
x2
+
x2
x1
-2的值為整數(shù)的實(shí)數(shù)k的整數(shù)值;
(3)若k=-2,λ=
x1
x2
,試求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD的底面ABCD是菱形,PA=AD=AC=2,PD=
2
PA,△PCD是以CD為底邊的等腰三角形,且點(diǎn)F為PC的中點(diǎn).
(1)求證:PA∥平面BFD;
(2)求二面角C-BF-D的余弦值;
(3)求三棱錐B-CDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-e2x+bx+c,x≤1
a(x21nx-x+1)+1,x>1
,函數(shù)f(x)在x=0處取得極值1.
(I)求實(shí)數(shù)b,c的值;
(Ⅱ)求f(x)在區(qū)間[-2,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
m
=(cosx,sinx),x∈(0,π),
n
=(1,
3
).
(1)若|
m
-
n
|=
5
,求x的值;
(2)設(shè)f(x)=(
m
+
n
)•
n
,求函數(shù)f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案