已知三棱錐A-BCD及其三視圖如圖所示.
(I)若DE⊥AB于E,DE⊥AC于F,求證:AC⊥平面DEF;
(Ⅱ)求二面角B-AC-D的大小.

【答案】分析:(Ⅰ)由三視圖可知三棱錐A-BCD的底面是等腰直角三角形,且直角邊長為1,每個側(cè)面都是直角三角形,且棱錐的高AD=2,利用線面垂直的判定和性質(zhì)可以證得AC⊥DE,又DF⊥AC,則可得到線面垂直;
(Ⅱ)由(Ⅰ)可知∠DFE為二面角B-AC-D的平面角,分別在直角三角形ADB和直角三角形ADC中求出斜邊上的高DE、DF,則二面角B-AC-D的大小可求.
解答:(I)證明:由三視圖可得,三棱錐A-BCD中
∠ADB,∠ADC,∠DBC,∠ABC都等于90°,
每個面都是直角三角形;
如圖,

可得CB⊥面ADB,所以CB⊥DE,
又DE⊥AB,AB∩BC=B,所以DE⊥面ABC,
而AC?面ABC,所以DE⊥AC,
又DF⊥AC,DE∩DF=D,所以AC⊥面DEF.
(II)解:由(I)知∠DFE為二面角B-AC-D的平面角,
在直角三角形ADB中,由AD=2,DB=1,所以AB=,
所以
在直角三角形DBC中,因為DB=BC=1,所以DC=,在直角三角形ADC中,
AD=2,DC=,所以AC=
所以
在直角三角形DEF中,


點評:本題考查直線與平面垂直的判定,考查了二面角的求法,考查了三視圖,解答此題的關(guān)鍵是能根據(jù)三視圖中的數(shù)據(jù)得到原幾何體中量的關(guān)系,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F(xiàn)分別是直線AC,AD上的點,且
AE
AC
=
AF
AD
=λ.
(1)求二面角B-CD-A平面角的余弦值
(2)當λ為何值時,平面BEF⊥平面ACD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐A-BCD中,AB=CD,且直線AB與CD成60°角,點M、N分別是BC、AD的中點,則直線AB和MN所成的角是
60°
60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐A-BCD的各棱長均為1,且E是BC的中點,則
AE
CD
=( �。�

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1992•云南)已知三棱錐A-BCD的體積是V,棱BC的長是a,面ABC和面DBC的面積分別是S1和S2.設面ABC和面DBC所成的二面角是α,那么sinα=
3aV
2S1S2
3aV
2S1S2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•大連一模)已知三棱錐A-BCD及其三視圖如圖所示.
(I)若DE⊥AB于E,DE⊥AC于F,求證:AC⊥平面DEF;
(Ⅱ)求二面角B-AC-D的大小.

查看答案和解析>>

同步練習冊答案