【題目】已知函數(shù)(
),其中
是自然對數(shù)的底數(shù).
(1)若的兩個根分別為
,且滿足
,求
的值;
(2)當(dāng)時,討論
的單調(diào)性.
【答案】(1);(2)見解析.
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),令導(dǎo)函數(shù)等于0,求出方程的根即可;(2)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間即可.
試題解析:(1)的定義域為
,
,由已知方程
有兩個根,解得
,
,于是
,解得
.
(2)由(1)知
①當(dāng)時,
,當(dāng)
,
;當(dāng)
,
;所以
在
上單調(diào)遞減,在
上單調(diào)遞增.②當(dāng)
時,令
,得
,由
得
,由
得
或
,所以
在
,
上單調(diào)遞增,在
上單調(diào)遞減;③當(dāng)
時,令
,
,故
在
上遞增;④當(dāng)
時,令
,得
,由
得
,由
得
或
,所以
在
,
上單調(diào)遞增,在
上單調(diào)遞減;綜上,當(dāng)
時,
在
上單調(diào)遞減,在
上單調(diào)遞增.當(dāng)
時,
在
,
上單調(diào)遞增,在
上單調(diào)遞減.當(dāng)
時,
在
上遞增.當(dāng)
時,
在
,
上單調(diào)遞增,在
上單調(diào)遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠需要確定加工某大型零件所花費的時間,連續(xù)4天做了4次統(tǒng)計,得到的數(shù)據(jù)如下:
零件的個數(shù) | 2 | 3 | 4 | 5 |
加工的時間 | 2.5 | 3 | 4 | 5.5 |
(1)在直角坐標(biāo)系中畫出以上數(shù)據(jù)的散點圖,求出關(guān)于
的回歸方程
,并在坐標(biāo)系中畫出回歸直線;
(2)試預(yù)測加工10個零件需要多少時間?
參考公式:兩個具有線性關(guān)系的變量的一組數(shù)據(jù):,
其回歸方程為,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在
軸上的橢圓,離心率
,且橢圓過點
.
(1)求橢圓的方程;
(2)設(shè)橢圓左、右焦點分別為,過
的直線
與橢圓交于不同的兩點
,則
的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知整數(shù)對的序列為,
,
,
,
,
,
,
,(
),
,
,
,…,則第70個數(shù)對是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題實數(shù)
滿足
,其中
,命題
實數(shù)
滿足
.
(1)若,有
且
為真,求實數(shù)
的取值范圍;
(2)若是
的充分不必要條件,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)和
兩種產(chǎn)品,按計劃每天生產(chǎn)
各不得少于10噸,已知生產(chǎn)
產(chǎn)品
噸需要用煤9噸,電4度,勞動力3個(按工作日計算).生產(chǎn)
產(chǎn)品1噸需要用煤4噸,電5度,勞動力10個,如果
產(chǎn)品每噸價值7萬元,
產(chǎn)品每噸價值12萬元,而且每天用煤不超過300噸,用電不超過200度,勞動力最多只有300個,每天應(yīng)安排生產(chǎn)
兩種產(chǎn)品各多少才是合理的?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù),
).以原點
為極點,以
軸正半軸為極軸,與直角坐標(biāo)系
取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線
的極坐標(biāo)方程為
.
(Ⅰ)設(shè)為曲線
上任意一點,求
的取值范圍;
(Ⅱ)若直線與曲線
交于兩點
,
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=log2x,x∈(0,2),若關(guān)于x的方程|g(x)|2+m|g(x)|+2m+3=0有三個不同實數(shù)解,則實數(shù)m的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com