從4名男同學(xué)中選出2人,5名女同學(xué)中選出3人,并將選出的5人排成一排,共有多少種不同的排法?
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:先選出5人,再進(jìn)行全排,利用分步計(jì)數(shù)原理,即可得到結(jié)論.
解答: 解:從4名男生中選出2人,有
C
2
4
=6種結(jié)果,
從5名女生中選出3人,有
C
3
5
=10種結(jié)果,
根據(jù)分步計(jì)數(shù)原理知選出5人,再把這5個(gè)人進(jìn)行排列共有6×10×
A
5
5
=7200種.
故有共有7200種不同的排法.
點(diǎn)評(píng):本題考查分步計(jì)數(shù)原理,考查學(xué)生分析解決問(wèn)題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)a1=1的等比數(shù)列,其前n項(xiàng)和為Sn,且S3,S2,S4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若bn=log2|an|,(n∈N+),設(shè)Tn為數(shù)列{
bn+1
|an|
}的前n項(xiàng)和,求證:Tn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一條光線從點(diǎn)A(-2,1)出發(fā),經(jīng)x軸反射后經(jīng)過(guò)點(diǎn)B(3,4),求:
(1)反射光線所在直線的方程.
(2)反射光線所在直線是否平分圓x2+y2-10x-12y+60=0?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=2x3-6x2+m(m為常數(shù))在[-2,2]上有最大值3,那么此函數(shù)在[-2,2]上的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax2+(2a-1)x
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在(1)的條件下,設(shè)函數(shù)f(x)在x1,x2(x1<x2)處取得極值,記點(diǎn)M(x1,f(x1)),N(x2,f(x2)),證明:線段MN與曲線f(x)存在異于M、N的公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)條件 p:A={x|x2-3x-4<0},條件q:B={x|-a≤x≤a+1},若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:關(guān)于x的不等式x2+(a-1)x+a2>0的解集為R.
命題q:方程
x2
a2+a
+
y2
a2-1
=1表示雙曲線.
若命題“p∨q”為真命題,命題“p∧q”為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x=4的距離是它到點(diǎn)M(1,0)的距離的2倍.求動(dòng)點(diǎn)M的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將25個(gè)數(shù)排成如圖所示的正方形:
已知第一行a11,a12,a13,a14,a15成等差數(shù)列,而每一列a1j,a2j,a3j,a4j,a5j(1≤j≤5)都成等比數(shù)列,且五個(gè)公比全相等.若a24=4,a41=-2,a43=10,則a11×a55的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案