(本題滿分14分)

如圖,已知正三棱柱的底面邊長是,是側(cè)棱的中點(diǎn),直線與側(cè)面所成的角為

     (Ⅰ)求此正三棱柱的側(cè)棱長;

(Ⅱ) 求二面角的大;

(Ⅲ)求點(diǎn)到平面的距離.

(本小題滿分14分)

解:(Ⅰ)設(shè)正三棱柱的側(cè)棱長為.取中點(diǎn),連

是正三角形,

又底面側(cè)面,且交線為

側(cè)面

,則直線與側(cè)面所成的角為.   ……………2分

中,,解得.       …………3分

此正三棱柱的側(cè)棱長為.                         ……………………4分

 注:也可用向量法求側(cè)棱長.

(Ⅱ)解法1:過,連

側(cè)面

為二面角的平面角.           ……………………………6分

中,,又

, 

中,.               …………………………8分

故二面角的大小為.               …………………………9分

解法2:(向量法,見后)

(Ⅲ)解法1:由(Ⅱ)可知,平面,平面平面,且交線為,則平面.                      …………10分

中,.         …………12分

中點(diǎn),點(diǎn)到平面的距離為.       …………14分

解法2:(思路)取中點(diǎn),連,由,易得平面平面,且交線為.過點(diǎn),則的長為點(diǎn)到平面的距離.

解法3:(思路)等體積變換:由可求.

解法4:(向量法,見后)

題(Ⅱ)、(Ⅲ)的向量解法:

(Ⅱ)解法2:如圖,建立空間直角坐標(biāo)系

設(shè)為平面的法向量.

                                       …………6分

又平面的一個(gè)法向量                          …………7分

.   …………8分

結(jié)合圖形可知,二面角的大小為.         …………9分

(Ⅲ)解法4:由(Ⅱ)解法2,…………10分

點(diǎn)到平面的距離.14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點(diǎn)P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實(shí)數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時(shí)x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點(diǎn),且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值

(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分)

已知點(diǎn)是⊙上的任意一點(diǎn),過垂直軸于,動(dòng)點(diǎn)滿足。

(1)求動(dòng)點(diǎn)的軌跡方程; 

(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請(qǐng)求出一個(gè)長度為的區(qū)間,使

;如果沒有,請(qǐng)說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案