(1)已知等差數(shù)列的前項(xiàng)和,求證:

(2)已知有窮等差數(shù)列的前三項(xiàng)和為20,后三項(xiàng)和為130,且,求。

 

【答案】

(1)利用倒序相加法可以證明;(2)25

【解析】

試題分析:(1)∵,,相加得,即;(2)∵,∴,又,∴n=25

考點(diǎn):本題考查了等差數(shù)列的前n項(xiàng)和及其性質(zhì)

點(diǎn)評:若一個(gè)數(shù)列和的各項(xiàng)系數(shù)是“首尾”對稱的,則可采用倒序相加法處理

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、已知等差數(shù)列的公差為1,若前4項(xiàng)之和為1,則前8項(xiàng)之和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知等差數(shù)列{an}滿足a2+a4=4,a3+a5=10,求它的前10項(xiàng)的和
(2)已知數(shù)列{an}的前n項(xiàng)和Sn=3+2n,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知等差數(shù)列{an}滿足a3+a6=9,a1a8=8,a1>a8,求數(shù)列{an}的前n項(xiàng)和Sn
(2)已知等比數(shù)列{bn}滿足b3=2,b2+b4=
203
,求{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知等差數(shù)列{an}中a3•a5=91,a1+a7=20,求{an}的公差d;
(2)有三個(gè)數(shù)成等比數(shù)列,它們的和等于14,它們的積等于64,求該數(shù)列的公比q.

查看答案和解析>>

同步練習(xí)冊答案