【題目】在平面直角坐標系xOy中,橢圓E: (a>b>0)過點( ,1),且與直線 x+2y﹣4=0相切.
(1)求橢圓E的方程;
(2)若橢圓E與x軸交于M、N兩點,橢圓E內(nèi)部的動點P使|PM|、|PO|、|PN|成等比數(shù)列,求 的取值范圍.

【答案】
(1)解:∵橢圓E: (a>b>0)與直線 x+2y﹣4=0相切,聯(lián)立

整理得( )x2﹣2 a2x+4a2﹣a2b2=0,

由△=0,可得 …①

∵橢圓E: (a>b>0)過點( ,1),∴ …②

由①②得a2=4,b2=2.∴橢圓E的方程:


(2)解:由(1)得M(﹣2,0))、PN(2,0),設(shè)P(m,n)

∵|PM|、|PO|、|PN|成等比數(shù)列,

∴|PO|2=|PN||PM|(m2+n22=

m2=n2+2,…③

,∴ =2n2﹣2

∵P在橢圓E內(nèi)部,∴0≤n2<1,

.即 的取值范圍為[﹣2,0)


【解析】(1)由橢圓E: (a>b>0)與直線 x+2y﹣4=0相切,聯(lián)立 ,由△=0,可得 …①,由橢圓E: (a>b>0)過點( ,1),∴ …②,由①②得a2 , b2(2)設(shè)P(m,n),由|PO|2=|PN||PM|(m2+n22= m2=n2+2, ∴ =2n2﹣2,由n的范圍求得其范圍,
【考點精析】解答此題的關(guān)鍵在于理解橢圓的標準方程的相關(guān)知識,掌握橢圓標準方程焦點在x軸:,焦點在y軸:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).
(1)討論函數(shù)y=f(x)g(x)的奇偶性;
(2)當b=0時,判斷函數(shù)y= 在(﹣1,1)上的單調(diào)性,并說明理由;
(3)設(shè)h(x)=|af2(x)﹣ |,若h(x)的最大值為2,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓E: (a>b>0)過點( ,1),且與直線 x+2y﹣4=0相切.
(1)求橢圓E的方程;
(2)若橢圓E與x軸交于M、N兩點,橢圓E內(nèi)部的動點P使|PM|、|PO|、|PN|成等比數(shù)列,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且對任意正整數(shù)n,都有3an=2Sn+3成立.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3an , 求數(shù)列{ }的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中不正確的是________.(填序號)

①若a∈R,則“<1”是“a>1”的必要不充分條件;

②“pq為真命題”是“pq為真命題”的必要不充分條件;

③若命題p:“x∈R,sin x+cos x”,則p是真命題;

④命題“x0∈R,+2x0+3<0”的否定是“x∈R,x2+2x+3>0”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分別為A1C1、B1C1的中點,D為棱CC1上任一點.

(Ⅰ)求證:直線EF∥平面ABD;
(Ⅱ)求證:平面ABD⊥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的最小值為.

1)求;

2)若,求及此時的最大值.

【答案】(1) (2)答案見解析.

【解析】試題分析:(1)利用同角三角函數(shù)間的基本關(guān)系化簡函數(shù)解析式后,分三種情況:小于﹣1時大于﹣1而小于1時大于1時,根據(jù)二次函數(shù)求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一問的g(a)的第二和第三個解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.

試題解析:

(1)由

.這里

①若則當時,

②若時,

③若則當時,

因此

(2)

①若,則有,矛盾;

②若,則有(舍).

時, 此時

時, 取得最大值為5.

點睛:二次函數(shù)在閉區(qū)間上必有最大值和最小值,它只能在區(qū)間的端點或二次函數(shù)圖象的頂點處取到;常見題型有:(1)軸固定區(qū)間也固定;(2)軸動(軸含參數(shù)),區(qū)間固定;(3)軸固定,區(qū)間動(區(qū)間含參數(shù)). 找最值的關(guān)鍵是:(1)圖象的開口方向;(2)對稱軸與區(qū)間的位置關(guān)系;(3)結(jié)合圖象及單調(diào)性確定函數(shù)最值.

型】填空
結(jié)束】
21

【題目】已知兩個不共線的向量的夾角為,且為正實數(shù).

1)若垂直,求;

2)若,求的最小值及對應(yīng)的的值,并指出此時向量的位置關(guān)系.

3)若為銳角,對于正實數(shù),關(guān)于的方程有兩個不同的正實數(shù)解,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別為△ABC中角A,B,C的對邊,函數(shù) 且f(A)=5.
(1)求角A的大小;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】濮陽市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬元)的數(shù)據(jù)如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代號x

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預(yù)測該村2017年人均純收入.
附:回歸直線的斜率和截距的最小乘法估計公式分別為: = , =

查看答案和解析>>

同步練習冊答案