求函數(shù)y=數(shù)學(xué)公式-數(shù)學(xué)公式+(x-2)0的定義域.

解:要使函數(shù)有意義必有,

解得,
所以函數(shù)的定義域?yàn)椋簕x|}.
分析:利用開偶次方,被開方數(shù)非負(fù),以及00沒有意義,得到不等式組,求出x的范圍即可得到所求的定義域.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查函數(shù)的定義域的求法,不等式組的解法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
4
x4+
1
3
ax3-a2x2+a4(a>0)

(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象與直線y=1恰有兩個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),函數(shù)f(x)=(x2+1)(x+a).
(1)若函數(shù)f(x)的圖象上有與x軸平行的切線,求a的取值范圍.
(2)若f′(-1)=0,求函數(shù)y=f(x)在[-
32
,1]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、已知y是x的函數(shù),其中x=logst+logts (s>1,t>1),y=logs4t+logt4s+m(logs2t+logt2s)(常數(shù)m∈R),求函數(shù)y=f(x)的解析式,并求出它們的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
2
,-
3
2
),
b
=(
1
2
,
3
2
),且存在實(shí)數(shù)x和y,使向量
m
=
a
+(x2-3)•
b
,
n
=-y
a
+x
b
,且
m
n

(Ⅰ)求函數(shù)y=f(x)的關(guān)系式,并求其單調(diào)區(qū)間和極值;
(Ⅱ)是否存在正數(shù)M,使得對(duì)任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤M成立?若存在求出M;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的奇函數(shù)f(x)=ax3+bx2+cx+d,a,b,c,d∈R.當(dāng)x=-1時(shí),f(x)取得極大值
2
3

(1)求函數(shù)y=f(x)的表達(dá)式;
(2)判斷函數(shù)y=f(x)的圖象上是否存在兩點(diǎn),使得以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切
點(diǎn)的橫坐標(biāo)在區(qū)間[-
2
,
2
]上,并說明理由;
(3)設(shè)xn=1-2-n,ym=
2
(3-m-1)(m,n∈N*),求證:|f(xn)-f(ym)|<
4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案