【題目】已知f(x)=logax,g(x)=loga(2x+t﹣2)2 , (a>0,a≠1,t∈R).
(1)當(dāng)t=4,x∈[1,2]時(shí)F(x)=g(x)﹣f(x)有最小值為2,求a的值;
(2)當(dāng)0<a<1,x∈[1,2]時(shí),有f(x)≥g(x)恒成立,求實(shí)數(shù)t的取值范圍.
(備注:函數(shù)y=x+ 在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增).
【答案】
(1)解:由題意:f(x)=logax,g(x)=loga(2x+t﹣2)2,(a>0,a≠1,t∈R).
那么:F(x)=g(x)﹣f(x)=loga(2x+t﹣2)2﹣logax=loga ,
當(dāng)t=4時(shí),F(xiàn)(x)= ,x∈[1,2],
設(shè)h(x)= = ,x∈[1,2],則:F(x)=logah(x).
由于y=x+ 在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增,
∴h(x)在x∈[1,2]上是增函數(shù).
∴h(x)的最大值為h(2)max=18,
h(x)的最小值為h(1)min=16,
當(dāng)0<a<1時(shí),F(xiàn)(x)是減函數(shù),F(xiàn)(x)的最小值為F(x)min=loga18=2,
解得:a= (不符合)
當(dāng)a>1時(shí),F(xiàn)(x)是增函數(shù),F(xiàn)(x)的最小值為F(x)min=loga16=2,
解得:a=4,滿足題意.
因此a的值為4
(2)解:當(dāng)0<a<1,x∈[1,2]時(shí),有f(x)≥g(x)恒成立,
那么:logax≥loga(2x+t﹣2)2恒成立,即 在x∈[1,2]時(shí)恒成立
∴t≥﹣2x +2.
令u(x)=﹣2x +2=﹣2( )2+ ,
∵x∈[1,2],
∴
當(dāng) 時(shí),u(x)取得最大值為u(x)max=u(1)=1
故得實(shí)數(shù)t的取值范圍是[1,+∞)
【解析】(1)化簡(jiǎn)成函數(shù),可得函數(shù)是對(duì)數(shù)的復(fù)合函數(shù),對(duì)底數(shù)進(jìn)行討論,利用對(duì)數(shù)函數(shù)的性質(zhì)即可求解.(2)要使f(x)≥g(x)恒成立,利用對(duì)數(shù)函數(shù)的單調(diào)性,分離參數(shù),可求實(shí)數(shù)t的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)函數(shù)f(x)=( ) .
(1)求函數(shù)f(x)的值域
(2)求函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,BC中點(diǎn),則異面直線EF與AB1所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: ,不經(jīng)過(guò)原點(diǎn)O的直線l:y=kx+m(k>0)與橢圓E相交于不同的兩點(diǎn)A、B,直線OA,AB,OB的斜率依次構(gòu)成等比數(shù)列.
(Ⅰ)求a,b,k的關(guān)系式;
(Ⅱ)若離心率 且 ,當(dāng)m為何值時(shí),橢圓的焦距取得最小值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2012年,商品價(jià)格一度成為社會(huì)熱點(diǎn)話題,某種新產(chǎn)品投放市場(chǎng)的100天中,前40天價(jià)格呈直線上升,由于政府及時(shí)采取有效措施,從而使后60天的價(jià)格呈直線下降,現(xiàn)統(tǒng)計(jì)出其中4天的價(jià)格如下表
時(shí)間 | 第4天 | 第32天 | 第60天 | 第90天 |
價(jià)格(元) | 23 | 30 | 22 | 7 |
(1)寫(xiě)出價(jià)格f(x)關(guān)于時(shí)間x的函數(shù)關(guān)系式(x表示投放市場(chǎng)的第x天);
(2)銷售量g(x)與時(shí)間x的函數(shù)關(guān)系: (1≤x≤100,且x∈N),則該產(chǎn)品投放市場(chǎng)第幾天銷售額最高?最高為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ax2+x﹣a,a∈R
(1)若a=1,解不等式f(x)≥1;
(2)若a<0,解不等式f(x)>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓和直線.
(Ⅰ)求的參數(shù)方程以及圓上距離直線最遠(yuǎn)的點(diǎn)坐標(biāo);
(Ⅱ)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,將圓上除點(diǎn)以外所有點(diǎn)繞著逆時(shí)針旋轉(zhuǎn)得到曲線,求曲線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線交曲線于兩點(diǎn).
(1)寫(xiě)出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的直角坐標(biāo)為,求點(diǎn)到兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sin2x+cos2x﹣m在[0, ]上有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.(﹣1,2)
B.[1,2)
C.(﹣1,2]
D.[1,2]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com