精英家教網 > 高中數學 > 題目詳情
18.已知常數a>0,函數f(x)=ln(1+ax)-$\frac{2x}{x+2}$.討論f(x)在區(qū)間(0,+∞)上的單調性.

分析 利用導數判斷函數的單調性,注意對a分類討論.

解答 解:∵f(x)=ln(1+ax)-$\frac{2x}{x+2}$,
∴f′(x)=$\frac{a}{1+ax}$-$\frac{4}{{(x+2)}^{2}}$=$\frac{{ax}^{2}-4(1-a)}{(1+ax{)(x+2)}^{2}}$,
∵(1+ax)(x+2)2>0,
∴當1-a≤0時,即a≥1時,f′(x)≥0恒成立,
則函數f(x)在(0,+∞)單調遞增,
當0<a≤1時,由f′(x)=0得x=±$\frac{2\sqrt{a(1-a)}}{a}$,
則函數f(x)在(0,$\frac{2\sqrt{a(1-a)}}{a}$)單調遞減,在($\frac{2\sqrt{a(1-a)}}{a}$,+∞)單調遞增.

點評 本題考查了函數的單調性問題,考查導數的應用以及分類討論思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

8.點P在△ABC所在平面上,若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{AB}$,且S△ABC=12,則△PAB的面積為(  )
A.4B.6C.8D.16

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.如圖,四邊形ABEF為矩形,四邊形CEFD為直角梯形,CE∥DF,EF⊥FD,平面ABEF⊥平面CEFD,P為AD的中點,且AB=EC=$\frac{1}{2}$FD.
(1)求證:CD⊥平面ACF;
(2)若BE=2AB,求二面角B-FC-P的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.f:x→x2是集合A到集合B的映射,如果B={1,2},那么A∩B只可能是(  )
A.{1,2}B.{1}或∅C.$\left\{{1,\sqrt{2},2}\right\}$D.{1}

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.如圖所示的三棱柱ABE-DCF中,AB=AF,BE=EF=2.
(Ⅰ)證明:AE⊥BF;
(Ⅱ)若∠BEF=60°,AE=$\sqrt{2}$AB=2,求三棱柱ABE-DFC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.函數f(x)=$\frac{1}{\sqrt{2x-3}}$的定義域是(  )
A.(0,$\frac{3}{2}$)B.[$\frac{3}{2}$,+∞)C.(-∞,$\frac{3}{2}$]D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.下列判斷錯誤的是( 。
A.“|am|<|bm|”是“|a|<|b|”的充分不必要條件
B.若¬(p∧q)為真命題,則p,q均為假命題
C.命題“?x∈R,ax+b≤0”的否定是“?x∈R,ax+b>0”
D.若ξ~B(8,0.125),則Eξ=1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.函數f(x)=x3-3|x|+1(x≤1)的零點所在區(qū)間為(  )
A.$(-\frac{1}{3},-\frac{1}{4})$和$(\frac{1}{2},1)$B.$(-\frac{1}{2},-\frac{1}{3})$和$(\frac{1}{3},\frac{1}{2})$C.$(-\frac{1}{2},-\frac{1}{3})$和$(\frac{1}{2},1)$D.$(-\frac{1}{3},-\frac{1}{4})$和$(\frac{1}{3},\frac{1}{2})$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知函數f(x)=x3-3x2+3x+1.判斷f(x)的單調性,并求其單調區(qū)間.

查看答案和解析>>

同步練習冊答案