【題目】已知中,角所對的邊分別為,滿足.
(1)求的大。
(2)如圖,,在直線的右側取點,使得.當角為何值時,四邊形面積最大.
【答案】(1)(2)
【解析】
(1)(法一)根據(jù)正弦定理利用“邊化角”的方法將原式化為,利用兩角和的正弦公式進行化簡,結合三角形的性質即可求得的大;(法二)根據(jù)余弦定理利用“角化邊”的方法將原式化為,化簡得出的值,即可得出的大小.
(2)根據(jù)題意,設,根據(jù)余弦定理表達出,再根據(jù)三角形的面積公式,分別表達出與,從而得到四邊形面積的函數(shù),利用三角函數(shù)的性質即可求出面積的最大值.
(1)(法一):在中,由正弦定理得
,故.
(法二)在中,由余弦定理得
故.
(2)由(1)知,且,為等邊三角形,
設,則在中,由余弦定理得,
四邊形的面積
當即時,
所以當時,四邊形的面積取得最大值.
科目:高中數(shù)學 來源: 題型:
【題目】定義區(qū)間,,,的長度均為,多個區(qū)間并集的長度為各區(qū)間長度之和,例如, 的長度. 用表示不超過的最大整數(shù),記,其中.設,,當時,不等式解集區(qū)間的長度為,則的值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】兩次購買同一種物品,可以用兩種不同的策略,第一種是不考慮物品價格的升降,每次購買這種物品的數(shù)量一定;第二種是不考慮物品價格的升降,每次購買這種物品所花的錢數(shù)一定.哪種購物方式比較經(jīng)濟?你能把所得結論作一些推廣嗎?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),曲線在點處的切線方程為.
(1)求,的值;
(2)若,求函數(shù)的單調(diào)區(qū)間;
(3)設函數(shù),且在區(qū)間內(nèi)存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E﹣BCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點F(1,0),O為坐標原點,A,B是拋物線C上異于 O的兩點.
(1)求拋物線C的方程;
(2)若直線AB過點(8,0),求證:直線OA,OB的斜率之積為定值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)若對定義域內(nèi)的任意,都有成立,求實數(shù)的值;
(2)若函數(shù)的定義域上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)若,證明對任意的正整數(shù), .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓上的點,直線與(為坐標原點)的斜率之積為.若動點滿足,試探究是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在區(qū)間,使得,則稱函數(shù)為“可等域函數(shù)”,區(qū)間A為函數(shù)的一個“可等域區(qū)間”.給出下列四個函數(shù):①;②;③;④.其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com