【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點(diǎn)).

(1)試求拋物線的方程;

(2)已知點(diǎn)兩點(diǎn)在拋物線上,是以點(diǎn)為直角頂點(diǎn)的直角三角形.

①求證:直線恒過(guò)定點(diǎn);

②過(guò)點(diǎn)作直線的垂線交于點(diǎn),試求點(diǎn)的軌跡方程,并說(shuō)明其軌跡是何種曲線.

【答案】(1);(2)①證明見(jiàn)解析;②,是以為直徑的圓(除去點(diǎn).

【解析】

1)設(shè)AxA,yA),BxB,yB),由|OA|=|OB|,可得2pxA2pxB,化簡(jiǎn)可得:點(diǎn)A,B關(guān)于x軸對(duì)稱.因此ABx軸,且∠AOx=30°.可得yA=2p,再利用等邊三角形的面積計(jì)算公式即可得出;

2)①由題意可設(shè)直線PQ的方程為:xmy+a,Px1,y1),Qx2,y2).與拋物線方程聯(lián)立化為:y2mya=0,利用∠PMQ=90°,可得0利用根與系數(shù)的關(guān)系可得m,或m),進(jìn)而得出結(jié)論;

設(shè)Nxy),根據(jù)MNNH,可得0,即可得出.

(1)解依題意,設(shè),

則由,得,

,

因?yàn)?/span>,,所以,

,

,關(guān)于軸對(duì)稱,

所以軸,且,

所以.

因?yàn)?/span>,所以,

所以

,,

故拋物線的方程為.

(2)①證明 由題意可設(shè)直線的方程為,

,

,消去,得

,.

因?yàn)?/span>,所以.

.

整理得,

,

,

,

所以.

當(dāng),即時(shí),

直線的方程為,

過(guò)定點(diǎn),不合題意舍去.

故直線恒過(guò)定點(diǎn).

②解 設(shè),則,即,

,

即軌跡是以為直徑的圓(除去點(diǎn)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表如下,頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合計(jì)

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).

(1)寫出曲線的極坐標(biāo)方程,并求交點(diǎn)的極坐標(biāo);

(2)射線與曲線分別交于點(diǎn)異于原點(diǎn)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).

(1)寫出曲線的極坐標(biāo)方程,并求交點(diǎn)的極坐標(biāo);

(2)射線與曲線分別交于點(diǎn)異于原點(diǎn)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)集具有性質(zhì);對(duì)任意的、,,與兩數(shù)中至少有一個(gè)屬于

1)分別判斷數(shù)集是否具有性質(zhì),并說(shuō)明理由;

2)證明:,且;

3)當(dāng)時(shí),若,求集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知由自然數(shù)組成的元集合,非空集合,且對(duì)任意的,都有.

(1)當(dāng)時(shí),求所有滿足條件的集合;

(2)當(dāng)時(shí),求所有滿足條件的集合的元素總和;

(3)定義一個(gè)集合的交替和如下:按照遞減的次序重新排列該集合的元素,然后從最大數(shù)開(kāi)始交替地減、加后繼的數(shù).例如集合的交替和是,集合的交替和為.當(dāng)時(shí),求所有滿足條件的集合交替和的總和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,若,且的圖象相鄰的對(duì)稱軸間的距離不小于.

(1)求的取值范圍.

(2)若當(dāng)取最大值時(shí), ,且在中, 分別是角的對(duì)邊,其面積,求周長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】唐三彩,中國(guó)古代陶瓷燒制工藝的珍品,它吸取了中國(guó)國(guó)畫、雕塑等工藝美術(shù)的特點(diǎn),在中國(guó)文化中占有重要的歷史地位,在中國(guó)的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,對(duì)唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史,某陶瓷廠在生產(chǎn)過(guò)程中,對(duì)仿制的100件工藝品測(cè)得其重量(單位: )數(shù)據(jù),將數(shù)據(jù)分組如下表:

1)在答題卡上完成頻率分布表;

2)以表中的頻率作為概率,估計(jì)重量落在中的概率及重量小于2.45的概率是多少?

3統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值例如區(qū)間的中點(diǎn)值是2.25作為代表.據(jù)此估計(jì)這100個(gè)數(shù)據(jù)的平均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案