【題目】一個五位自然數(shù)數(shù)稱為“跳躍數(shù)”,如果同時有或(例如13284,40329都是“跳躍數(shù)”,而12345,54371,94333都不是“跳躍數(shù)”),則由1,2,3,4,5組成沒有重復(fù)數(shù)字且1,4不相鄰的“跳躍數(shù)”共有_____個.
【答案】
【解析】
根據(jù)1,4不相鄰及“跳躍數(shù)”的特點分類進(jìn)行求解.
若為“M”型:
①第二位和第四位是4、5時,4、5的排法有2種,則1只有1種排法,2、3安排在剩下的2個位置,此時有2×2=4個跳躍數(shù);
②第二位和第四位是3、5時,3、5的排法有2種,則4只有1種排法,1、2安排在剩下的2個位置,此時有2×2=4個跳躍數(shù);
若為“W”型:
③第二位和第四位是1、2時,1、2的排法有2種,則4只有1種排法,3、5安排在剩下的2個位置,此時有2×2=4個跳躍數(shù);
④第二位和第四位是1、3時,1、3的排法有2種,此時只有2個跳躍數(shù);
則一共有4+4+4+2=14個跳躍數(shù);
故答案為:14.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種拋硬幣游戲的規(guī)則是:拋擲一枚硬幣,每次正面向上得1分,反面向上得2分.
(1)設(shè)拋擲5次的得分為,求的分布列和數(shù)學(xué)期望;
(2)求恰好得到分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為=(>0),過點的直線的參數(shù)方程為(t為參數(shù)),直線與曲線C相交于A,B兩點.
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點.定義點的“友好點”為:,現(xiàn)有下列命題:
①若點的“友好點”是點,則點的“友好點”一定是點.
②單位圓上的點的“友好點”一定在單位圓上.
③若點的“友好點”還是點,則點一定在單位圓上.
④對任意點,它的“友好點”是點,則 的取值集合是 .
其中的真命題是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年非洲豬瘟在東北三省出現(xiàn),為了進(jìn)行防控,某地生物醫(yī)藥公司派出技術(shù)人員對當(dāng)?shù)丶滓覂蓚養(yǎng)殖場提供技術(shù)服務(wù),方案和收費標(biāo)準(zhǔn)如下:
方案一,公司每天收取養(yǎng)殖場技術(shù)服務(wù)費40元,對于需要用藥的每頭豬收取藥費2元,不需要用藥的不收費;
方案二,公司每天收取養(yǎng)殖場技術(shù)服務(wù)費120元,若需要用藥的豬不超過45頭,不另外收費,若需要用藥的豬超過45頭,超過部分每天收取藥費8元.
(1)設(shè)日收費為(單位:元),每天需要用藥的豬的數(shù)量為,試寫出兩種方案中與 的函數(shù)關(guān)系式.
(2)若該醫(yī)藥公司從10月1日起對甲養(yǎng)殖場提供技術(shù)服務(wù),10月31日該養(yǎng)殖場對其中一個豬舍9月份和10月份豬的發(fā)病數(shù)量進(jìn)行了統(tǒng)計,得到如下列聯(lián)表.
9月份 | 10月份 | 合計 | |
未發(fā)病 | 40 | 85 | 125 |
發(fā)病 | 65 | 20 | 85 |
合計 | 105 | 105 | 210 |
根據(jù)以上列聯(lián)表,判斷是否有的把握認(rèn)為豬未發(fā)病與醫(yī)藥公司提供技術(shù)服務(wù)有關(guān).
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(3)當(dāng)?shù)氐谋B(yǎng)殖場對過去100天豬的發(fā)病情況進(jìn)行了統(tǒng)計,得到如上圖所示的條形統(tǒng)計圖.依據(jù)該統(tǒng)計數(shù)據(jù),從節(jié)約養(yǎng)殖成本的角度去考慮,若丙養(yǎng)殖場計劃結(jié)合以往經(jīng)驗從兩個方案中選擇一個,那么選擇哪個方案更合適,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點為極點,以軸正半軸為極軸的極坐標(biāo)系中,曲線上一點的極坐標(biāo)為,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)點在上,點在上(異于極點),若四點依次在同一條直線上,且成等比數(shù)列,求的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;
(2)證明:若,則對任意x,x,xx,有。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m,n為兩條不同的直線,,為兩個不同的平面,則下列命題中正確的有
,,, ,
,, ,
A. 0個 B. 1個 C. 2個 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com