【題目】已知點,動點P 滿足:|PA|=2|PB|.
(1)若點P的軌跡為曲線,求此曲線的方程;
(2)若點Q在直線l1: x+y+3=0上,直線l2經(jīng)過點Q且與曲線只有一個公共點M,求|QM|的最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若函數(shù),
是函數(shù)
的兩個零點,
是函數(shù)
的導(dǎo)函數(shù),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,已知AB=9,BC=6, =2
.
(1)若四邊形ABCD是矩形,求
的值;
(2)若四邊形ABCD是平行四邊形,且
=6,求
與
夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)學(xué)生和包括老師、家長在內(nèi)的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計的結(jié)果如下表:
| 應(yīng)該取消 | 應(yīng)該保留 | 無所謂 | |
在校學(xué)生 | 2100人 | 120人 | y人 | |
社會人士 | 600人 | x人 | z人 |
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在區(qū)間上的函數(shù)
和
,如果對任意
,都有
成立,則稱
在區(qū)間
上可被
替代,
稱為“替代區(qū)間”.給出以下問題:
①在區(qū)間
上可被
替代;
②如果在區(qū)間
可被
替代,則
;
③設(shè),則存在實數(shù)
及區(qū)間
, 使得
在區(qū)間
上被
替代.
其中真命題是
A. ①②③ B. ②③ C. ①③ D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知以
為圓心的圓的方程為:
,以
為圓心的圓的方程為:
.
(1)若過點的直線
沿
軸向左平移3個單位,沿
軸向下平移4個單位后,回到原來的位置,求直線
被圓
截得的弦長;
(2)圓是以1為半徑,圓心在圓
:
上移動的動圓 ,若圓
上任意一點
分別作圓
的兩條切線
,切點為
,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點
,離心率為
,點
坐標(biāo)原點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的左焦點
任作一條不垂直于坐標(biāo)軸的直線
,交橢圓
于
兩點,記弦
的中點為
,過
作
的垂線
交直線
于點
,證明:點
在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 、
分別為直角三角形
的直角邊
和斜邊
的中點,沿
將
折起到
的位置,連結(jié)
、
,
為
的中點.
(1)求證: 平面
;(2)求證:平面
平面
;
(3)求證: 平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形中,
,
,
,將
沿
折起,使平面
平面
,構(gòu)成四面體
,則在四面體
中,下列說法不正確的是( ).
A. 直線直線
B. 直線
直線
C. 直線平面
D. 平面
平面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com