已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5].
(1)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù).
(2)若a為任意實(shí)數(shù),求函數(shù)f(x)=x2+2ax+2,x∈[-5,5]的最小值g(a).
(3)對于函數(shù)y=g(a),若存在實(shí)數(shù)a0使得g(a)≤g(a0)成立,求g(a0)的值及相應(yīng)a0的值.

解:(1)由于二次函數(shù)f(x)=x2+2ax+2的對稱軸為x=-a,要使f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù),
應(yīng)有-a≥5,或-a≤-5,解得 a≤-5,或a≥5,故實(shí)數(shù)a的取值范圍為(-∞,-5]∪[5,+∞).
(2)當(dāng)-a≥5時,即a≤-5時,函數(shù)在[-5,5]上是減函數(shù),f(x)的最小值g(a)=f(5)=27+10a.
當(dāng)-a≤-5時,即a≥5 時,函數(shù)在[-5,5]上是增函數(shù),f(x)的最小值g(a)=f(-5)=27-10a.
當(dāng)-5<-a<5時,即-5<a<5時,f(x)的最小值g(a)=f(-a)=2-a2
綜上可得,g(a)=
(3)對于函數(shù)y=g(a),若存在實(shí)數(shù)a0使得g(a)≤g(a0)成立,故g(a0)應(yīng)是g(a)的最大值.
由函數(shù)y=g(a)的解析式可得,g(a0)=27,此時,a0=0.
分析:(1)由題意可得,區(qū)間[-5,5]在二次函數(shù)的對稱軸的左側(cè)或右側(cè),從而得-a≥5,或-a≤-5,由此求得實(shí)數(shù)a的取值范圍.
(2)分區(qū)間[-5,5]在二次函數(shù)的對稱軸的左側(cè)、右側(cè) 以及對稱軸在區(qū)間中間三種情況,根據(jù)二次函數(shù)在[-5,5]上的單調(diào)性,求出f(x)的最小值g(a).
(3)由題意可得,g(a0)應(yīng)是g(a)的最大值,根據(jù)函數(shù)y=g(a)的解析式可得,g(a0)=27,此時,a0=0.
點(diǎn)評:本題主要考查求二次函數(shù)在閉區(qū)間上的最值,求函數(shù)的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案