如圖12-6,給出定點(diǎn)A(a,0)(a>0)和直線(xiàn)lx=-1.B是直線(xiàn)l上的動(dòng)點(diǎn),∠BOA的角平分線(xiàn)交AB于點(diǎn)C求點(diǎn)C的軌跡方程,并討論方程表示的曲線(xiàn)類(lèi)型與a值的關(guān)系

注:文科題設(shè)還有條件a≠1

圖12-6

解法一:依題意,記B(-1,b) (b∈R),則直線(xiàn)OA和OB的方程分別y=0和y=-bx.設(shè)點(diǎn)C(x,y),

則有0≤xa,由OC平分∠AOB,

知點(diǎn)C到OA、OB距離相等根據(jù)點(diǎn)到直線(xiàn)的距離公式得|y|=          ①

依題設(shè),點(diǎn)C在直線(xiàn)AB上,故有:y=-(xa)

 

xa≠0,得b=-        ②

 

將②式代入①式得:y2[1+]=[y-2

 

整理得:y2[(1-a)x2-2ax+(1+a)y2]=0

若y≠0,則(1-a)x2-2ax+(1+a)y2=0(0<xa);

若y=0,則b=0,∠AOB=π,點(diǎn)C的坐標(biāo)為(0,0)滿(mǎn)足上式

綜上得點(diǎn)C的軌跡方程為:(1-a)x2-2ax+(1+a)y2=0(0≤xa)

 

a≠1,

 

=1(0≤r<a )              ③

由此知,當(dāng)0<a<1時(shí),方程③表示橢圓弧段;

當(dāng)a>1時(shí),方程③表示雙曲線(xiàn)一支的弧段

圖12-25

 

解法二:如圖12-25,設(shè)D是lx軸的交點(diǎn),過(guò)點(diǎn)C作CE⊥x軸,E是垂足

(Ⅰ)當(dāng)|BD|≠0時(shí),設(shè)點(diǎn)C(x,y),則0<xa,y≠0

 

由CE∥BD,得|BD|= (1+a)

 

∵∠COA=∠COB=∠COD-∠BOD=π-∠COA-∠BOD

∴2∠COA=π-∠BOD

 

∵tg(2∠COA)=,

 

tg(π-∠BOD)=-tg∠BOD,

 

tg∠COA=,

 

tg∠BOD=

 

 

整理得:(1-a)x2-2ax+(1+a)y2=0(0<xa)

 

(Ⅱ)當(dāng)|BD|=0時(shí),∠BOA=π,則點(diǎn)C的坐標(biāo)為(0,0),滿(mǎn)足上式

綜合(Ⅰ)(Ⅱ),得點(diǎn)C的軌跡方程為(1-a)x2-2ax+(1+a)y2=0(0≤xa)

以下同解法一.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在[-2,2]上的函數(shù)y=f(x)和y=g(x),其圖象如圖所示:給出下列四個(gè)命題:
①方程f[g(x)]=0有且僅有6個(gè)根    ②方程g[f(x)]=0有且僅有3個(gè)根
③方程f[f(x)]=0有且僅有5個(gè)根    ④方程g[g(x)]=0有且僅有4個(gè)根
其中正確命題的序號(hào)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)和y=g(x)的定義域均為{x|-2≤x≤2},其圖象如圖所示:

給出下列四個(gè)命題:
①函數(shù)y=f[g(x)]有且僅有6個(gè)零點(diǎn);  
②函數(shù)y=g[f(x)]有且僅有3個(gè)零點(diǎn);
③函數(shù)y=f[f(x)]有且僅有5個(gè)零點(diǎn);  
④函數(shù)y=g[f(x)]有且僅有4個(gè)零點(diǎn),其中正確的命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044

(經(jīng)典回放)如圖所示,給出定點(diǎn)A(a,0)(a>0)和直線(xiàn)l:x=-1,B是直線(xiàn)l上的動(dòng)點(diǎn),∠BOA的角平分線(xiàn)交AB于點(diǎn)C.求點(diǎn)C的軌跡方程,并討論方程表示的曲線(xiàn)類(lèi)型與a值的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖12-6,給出定點(diǎn)A(a,0)(a>0)和直線(xiàn)lx=-1.B是直線(xiàn)l上的動(dòng)點(diǎn),∠BOA的角平分線(xiàn)交AB于點(diǎn)C求點(diǎn)C的軌跡方程,并討論方程表示的曲線(xiàn)類(lèi)型與a值的關(guān)系

注:文科題設(shè)還有條件a≠1

圖12-6

查看答案和解析>>

同步練習(xí)冊(cè)答案