分析 直接利用二倍角公式化簡(jiǎn)求解即可.
解答 解:α是第一角限的角,$\frac{α}{2}∈$$(kπ,kπ+\frac{π}{4})$,k∈Z.
$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$=$\left|\frac{sin\frac{α}{2}+cos\frac{α}{2}}{sin\frac{α}{2}-cos\frac{α}{2}}\right|-\left|\frac{sin\frac{α}{2}-cos\frac{α}{2}}{sin\frac{α}{2}+cos\frac{α}{2}}\right|$,
當(dāng)$\frac{α}{2}∈$$(2nπ,2nπ+\frac{π}{4})$,n∈Z時(shí),上式=$\frac{sin\frac{α}{2}+cos\frac{α}{2}}{cos\frac{α}{2}-sin\frac{α}{2}}-\frac{cos\frac{α}{2}-sin\frac{α}{2}}{sin\frac{α}{2}+cos\frac{α}{2}}$=$\frac{2sinα}{cosα}$=2tanα.
當(dāng)$\frac{α}{2}∈$$(2nπ+π,2nπ+\frac{5π}{4})$,n∈Z時(shí),上式=$\frac{sin\frac{α}{2}+cos\frac{α}{2}}{cos\frac{α}{2}-sin\frac{α}{2}}-\frac{cos\frac{α}{2}-sin\frac{α}{2}}{sin\frac{α}{2}+cos\frac{α}{2}}$=$\frac{2sinα}{cosα}$=2tanα.
綜上,$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$=2tanα.
點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,二倍角的正弦函數(shù)的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2014 | B. | 2015 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M∩(P∩∁IN) | B. | M∩(N∩∁IP) | C. | M∩(∁IN∩∁IM) | D. | (M∩N)∪(M∩P) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com