11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}={n^2}-8n$
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn的最小值及其相應(yīng)的n的值.

分析 (1)當(dāng)n≥2時(shí),易求an=Sn-Sn-1=2n-9,當(dāng)n=1時(shí),a1=-7=S1,滿足題設(shè),從而可得數(shù)列{an}的通項(xiàng)公式;
(2)由(1)可得數(shù)列{an}的通項(xiàng)公式an=2n-9,可得:數(shù)列{an}的前4項(xiàng)均為負(fù)值,從第5項(xiàng)開始全為正數(shù),即可求得答案.

解答 解:(1)當(dāng)n≥2時(shí),an=Sn-Sn-1=(n2-8n)-[(n-1)2-8(n-1)]=2n-9,
當(dāng)n=1時(shí),a1=-7=S1,滿足題設(shè),
∴an=2n-9;
(2)由(1)可知數(shù)列{an}的通項(xiàng)公式an=2n-9,
令an=2n-9≥0,解得n≥4.5,
故數(shù)列{an}的前4項(xiàng)均為負(fù)值,從第5項(xiàng)開始全為正數(shù),
故當(dāng)n=4時(shí),Sn取得最小值,
故S4=a1+a2+a3+a4=-7-5-3-1=-16.

點(diǎn)評 本題考查等差數(shù)列的通項(xiàng)公式,及求和公式,利用等差數(shù)列的通項(xiàng)公式分析Sn的最值是解決問題的捷徑,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知α,β為銳角△ABC的兩個(gè)內(nèi)角,x∈R,f(x)=($\frac{cosα}{sinβ}$)|x-2|+($\frac{cosβ}{sinα}$)|x-2|,則關(guān)于x的不等式f(2x-1)-f(x+1)>0的解集為( 。
A.(-∞,$\frac{4}{3}$)∪(2,+∞)B.($\frac{4}{3}$,2)C.(-∞,-$\frac{4}{3}$)∪(2,+∞)D.(-$\frac{4}{3}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-2n-1,則a1+a17=( 。
A.31B.29C.30D.398

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.復(fù)數(shù)2i的平方根±(1+i).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x||x-4|≤2},$B=\left\{{x\left|{\frac{5-x}{x+1}>0}\right.}\right\}$,全集U=R.
(1)求A∩(∁UB);
(2)若集合C={x|x<a},A∩C≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為2,右焦點(diǎn)F到它的一條漸近線的距離為$\sqrt{3}$.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)是否存在過點(diǎn)F且與雙曲線的右支交于不同的P、Q兩點(diǎn)的直線l,當(dāng)點(diǎn)M滿足$\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{OP}+\overrightarrow{OQ})$時(shí),使得點(diǎn)M在直線x=-2上的射影點(diǎn)N滿足$\overrightarrow{PN}•\overrightarrow{QN}=0$?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線$\frac{x^2}{9}-\frac{y^2}{27}=1$與點(diǎn)M(5,3),F(xiàn)為右焦點(diǎn),若雙曲線上有一點(diǎn)P,則$PM+\frac{1}{2}PF$的最小值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.焦點(diǎn)為F(0,-1)的拋物線的標(biāo)準(zhǔn)方程是x2=-4y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過點(diǎn)(1,$\frac{3}{2}$),左、右焦點(diǎn)為F1、F2,右頂點(diǎn)為A,上頂點(diǎn)為B,且|AB|=$\frac{\sqrt{7}}{2}$|F1F2|.
(1)求橢圓E的方程;
(2)過點(diǎn)M(-4,0)作斜率為k(k≠0)的直線l,交橢圓E于P、Q兩點(diǎn),N為PQ中點(diǎn),問是否存在實(shí)數(shù)k,使得以F1F2為直徑的圓經(jīng)過N點(diǎn),說明理由.

查看答案和解析>>

同步練習(xí)冊答案