下圖是拋物線形拱橋,當(dāng)水面在l時,拱頂離水面2 m,水面寬4 m.水位下降1 m后,水面寬________ m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、B(4,0),動點(diǎn)P與A、B連線的斜率之積為-.
(1) 求點(diǎn)P的軌跡方程;
(2) 設(shè)點(diǎn)P的軌跡與y軸負(fù)半軸交于點(diǎn)C.半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長為r.
(ⅰ) 求圓M的方程;
(ⅱ) 當(dāng)r變化時,是否存在定直線l與動圓M均相切?如果存在,求出定直線l的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線C1:=1(a>0,b>0)的離心率為2.若拋物線C2:x2=2py(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
求滿足下列條件的拋物線的標(biāo)準(zhǔn)方程,并求對應(yīng)拋物線的準(zhǔn)線方程.
(1) 過點(diǎn)(-3,2);
(2) 焦點(diǎn)在直線x-2y-4=0上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)橢圓的中心在原點(diǎn),對稱軸為坐標(biāo)軸,且長軸長是短軸長的2倍.又點(diǎn)P(4,1)在橢圓上,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知F1、F2是橢圓C:=1(a>b>0)的兩個焦點(diǎn),P為橢圓C上一點(diǎn),且.若△PF1F2的面積為9,則b=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=x是指數(shù)函數(shù)(小前提),所以y=x是增函數(shù)(結(jié)論)”,上面推理錯誤的原因是______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com