【題目】某校倡導為特困學生募捐,要求在自動購水機處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:
售出水量(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(單位:元) | 165 | 142 | 148 | 125 | 150 |
學校計劃將捐款以獎學金的形式獎勵給品學兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎學金500元;綜合考核21-50名,獲二等獎學金300元;綜合考核50名以后的不獲得獎學金.
(1)若與成線性相關(guān),則某天售出9箱水時,預(yù)計收入為多少元?
(2)甲乙兩名學生獲一等獎學金的概率均為,獲二等獎學金的概率均為,不獲得獎學金的概率均為,已知甲乙兩名學生獲得哪個等級的獎學金相互獨立,求甲乙兩名學生所獲得獎學金之和的分布列及數(shù)學期望;
附:回歸方程,其中.
科目:高中數(shù)學 來源: 題型:
【題目】運動員參加射擊比賽,每人射擊4次(每次射一發(fā)),比賽規(guī)定:全不中得0分,只中一彈得15分,中兩彈得40分,中三彈得65分,中四彈得100分.已知某一運動員每一次射擊的命中率為,則他的得分期望為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種機器零件轉(zhuǎn)速在符合要求的范圍內(nèi)使用時間隨機器運轉(zhuǎn)速度的變化而變化,某檢測員隨機收集了20個機器零件的使用時間與轉(zhuǎn)速的數(shù)據(jù),列表如下:
機器轉(zhuǎn)速(轉(zhuǎn)/分) | 189 | 193 | 190 | 185 | 183 | 202 | 187 | 203 | 192 | 201 |
零件使用時間(月) | 43 | 33 | 39 | 37 | 38 | 37 | 38 | 35 | 38 | 35 |
機器轉(zhuǎn)速(轉(zhuǎn)/分) | 193 | 197 | 191 | 186 | 191 | 188 | 185 | 204 | 201 | 189 |
零件使用時間(月) | 37 | 40 | 41 | 37 | 35 | 37 | 42 | 36 | 34 | 40 |
(Ⅰ)若“轉(zhuǎn)速大于200轉(zhuǎn)/分”為“高速”,“轉(zhuǎn)速不大于200轉(zhuǎn)/分”為“非高速”,“使用時間大于36個月”的為“長壽命”,“使用時間不大于36個月”的為“非長壽命”,請根據(jù)上表數(shù)據(jù)完成下面的列聯(lián)表:
高速 | 非高速 | 合計 | |
長壽命 | |||
非長壽命 | |||
合計 |
(Ⅱ)根據(jù)(Ⅰ)中的列聯(lián)表,試運用獨立性檢驗的思想方法:能否在犯錯誤的概率不超過0.01的前提下認為零件使用壽命的長短與轉(zhuǎn)速高低之間的關(guān)系.
參考公式:,其中.
參考數(shù)據(jù):
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年3月14日,“共享單車”終于來到蕪湖,共享單車又被親切稱作“小黃車”是全球第一個無樁共享單車平臺,開創(chuàng)了首個“單車共享”模式.相關(guān)部門準備對該項目進行考核,考核的硬性指標是:市民對該項目的滿意指數(shù)不低于,否則該項目需進行整改,該部門為了了解市民對該項目的滿意程度,隨機訪問了使用共享單車的名市民,并根據(jù)這名市民對該項目滿意程度的評分(滿分分),繪制了如下頻率分布直方圖:
(I)為了了解部分市民對“共享單車”評分較低的原因,該部門從評分低于分的市民中隨機抽取人進行座談,求這人評分恰好都在的概率;
(II)根據(jù)你所學的統(tǒng)計知識,判斷該項目能否通過考核,并說明理由.
(注:滿意指數(shù)=)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=+bx+c,
(1)若f(x)在(-∞,+∞)上是增函數(shù),求b的取值范圍;
(2)若f(x)在x=1處取得極值,且x∈[-1,2]時,f(x)<c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)是定義在R上且周期為2的函數(shù),在區(qū)間[﹣1,1]上,f(x)= 其中a,b∈R.若 = ,則a+3b的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;
②設(shè)有一個回歸方程,若變量增加一個單位時,則平均增加5個單位;
③線性回歸方程所在直線必過;
④曲線上的點與該點的坐標之間具有相關(guān)關(guān)系;
⑤在一個列聯(lián)表中,由計算得,則其兩個變量之間有關(guān)系的可能性是.
其中錯誤的是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(﹣∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數(shù)列函數(shù)”的f(x)的序號為( )
A.①②
B.③④
C.①③
D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com