已知首項為1的數(shù)列滿足:對任意的正整數(shù),都有:                    

,其中是常數(shù).

(1)求實數(shù)的值;

(2)求數(shù)列的通項公式;

(3)設(shè)數(shù)列的前項和為,求證:,其中、

解:(Ⅰ)由,及  

(Ⅱ)當(dāng)時,有

 

設(shè)函數(shù)

當(dāng)時,

函數(shù)在區(qū)間上是增函數(shù),故  

從而對         

(Ⅲ)對,

,   

,

兩式相減,得,

 

    

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•深圳二模)已知首項為1的數(shù)列{an}滿足:對任意正整數(shù)n,都有:a12
a1
-1
+a22
a2
-1
+a32
a3
-1
+…+an2
an
-1
=(n2-2n+3)•2n+c
,其中c是常數(shù).
(Ⅰ)求實數(shù)c的值;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)設(shè)數(shù)列{
an
(-
1
2
)
an
-1
}
的前n項和為Sn,求證:S2n-1>S2m,其中m,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知首項為1的數(shù)列{an}滿足:對任意正整數(shù)n,都有:數(shù)學(xué)公式,其中c是常數(shù).
(Ⅰ)求實數(shù)c的值;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)設(shè)數(shù)列數(shù)學(xué)公式的前n項和為Sn,求證:S2n-1>S2m,其中m,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知首項為1的數(shù)列{an}滿足:對任意的正整數(shù)n,都有:a1·+a2·+…+an·=(n2-2n+3)·2n+c,其中c是常數(shù).

(1)求實數(shù)c的值;

(2)求數(shù)列{an}的通項公式;

(3)設(shè)數(shù)列{·}的前n項和為Sn,求證:S2n-1>S2m,其中m、n∈N*.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年廣東省深圳市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知首項為1的數(shù)列{an}滿足:對任意正整數(shù)n,都有:,其中c是常數(shù).
(Ⅰ)求實數(shù)c的值;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)設(shè)數(shù)列的前n項和為Sn,求證:S2n-1>S2m,其中m,n∈N*

查看答案和解析>>

同步練習(xí)冊答案