已知橢圓C的中心在原點,對稱軸為坐標軸,且過(0,1),(1,數(shù)學公式).
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l:3x-3y-1=0交橢圓C與A、B兩點,若T(0,1)求證:數(shù)學公式

(Ⅰ)解:設橢圓C的方程為mx2+ny2=1(m>0.n>0)
由橢圓C過點過(0,1),(1,)得:,解得
∴橢圓C的方程為
(Ⅱ)證明:設A(x1,y1),B(x2,y2),由消去y整理得27x2-12x-16=0,
由韋達定理得
兩邊平方整理可得,故只需證明
=x1x2+(y1-1)(y2-1)=x1x2+y1y2+(y1+y2)+1

=
恒成立
分析:(Ⅰ)設出橢圓C的方程,利用橢圓C過點過(0,1),(1,),建立方程組,即可求得橢圓C的方程;
(Ⅱ)由兩邊平方整理可得,故只需證明,將直線與橢圓方程聯(lián)立,利用韋達定理,及向量的數(shù)量積即可得到結論.
點評:本題考查待定系數(shù)法求橢圓的標準方程,考查直線與橢圓的位置關系,考查韋達定理的運用,解題的關鍵是聯(lián)立方程,正確運用韋達定理.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:山東省濟寧市2012屆高二下學期期末考試理科數(shù)學 題型:解答題

(本小題滿分14分) 已知在平面直角坐標系xoy中的一個橢圓,它的中心在原

點,左焦

(1)求該橢圓的標準方程;

(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;

(3)過原點O的直線交橢圓于點B、C,求△ABC面積的最大值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆山東省高二下學期期末考試理科數(shù)學 題型:解答題

(本小題滿分14分) 已知在平面直角坐標系xoy中的一個橢圓,它的中心在原

。

(1)求該橢圓的標準方程;

(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;

(3)過原點O的直線交橢圓于點B、C,求△ABC面積的最大值。

 

查看答案和解析>>

同步練習冊答案