函數(shù)f(x)=loga(x2-2ax+3)在區(qū)間(2,+∞)上是增函數(shù),則a的取值范圍是( )
A.(1,]
B.(1,2]
C.(0,1)∪(1,2]
D.(0,1)∪(1,]
【答案】分析:先根據(jù)復(fù)合函數(shù)的單調(diào)性確定函數(shù)g(x)=x2-2ax+3的單調(diào)性,進(jìn)而分a>1和0<a<1兩種情況討論:①當(dāng)a>1時(shí),考慮地函數(shù)的圖象與性質(zhì)得到其對(duì)稱軸在x=2的左側(cè),當(dāng)x=2時(shí)的函數(shù)值為正;②當(dāng)0<a<1時(shí),其對(duì)稱軸已在直線x=2的左側(cè),欲使得g(x)在(2,+∞)上單調(diào)遞增,只須g(2)≥0即可.最后取這兩種情形的并集即可.
解答:解:令g(x)=x2-2ax+3(a>0,且a≠1),
①當(dāng)a>1時(shí),g(x)在(2,+∞)上單調(diào)遞增,
∴1<a≤;
②當(dāng)0<a<1時(shí),g(x)在(2,+∞)上單調(diào)遞增,此種情況不可能
綜上所述:1<a≤
故選A.
點(diǎn)評(píng):本題主要考查復(fù)合函數(shù)的單調(diào)性和對(duì)數(shù)函數(shù)的真數(shù)一定大于0.屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實(shí)數(shù)a的范圍是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當(dāng)x∈[3,4]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有三個(gè)命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時(shí),其“小前提”是
(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個(gè)數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案