求函數(shù)y=
-sinx
+
cosx
定義域.
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:要使函數(shù)y=
-sinx
+
cosx
有意義,則必須
-sinx≥0
cosx≥0
,利用三角函數(shù)的單調(diào)性即可得出.
解答: 解:要使函數(shù)y=
-sinx
+
cosx
有意義,
則必須
-sinx≥0
cosx≥0
,
解得2kπ-
π
2
≤x≤2kπ
(k∈Z).
∴函數(shù)y=
-sinx
+
cosx
定義域是[2kπ-
π
2
,2kπ]
(k∈Z).
點評:本題考查了三角函數(shù)的單調(diào)性、根式函數(shù)的定義域,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列幾種說法:
①在△ABC中,若a2>b2+c2,則△ABC為鈍角三角形;
②在△ABC中,由sinA=sinB可得A=B;
③若a、b、c成等差數(shù)列,則a+c=2b;
④若ac=b2,則a、b、c成等比數(shù)列.
其中正確的有
 
(填上你認(rèn)為正確命題的所有序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間中兩兩垂直的平面最多有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式中正確的個數(shù)為(  )
①sin230°+cos260°+sin30°cos60°=
3
4

②sin220°+cos250°+sin20°cos50°=
3
4

③sin215°+cos245°+sin15°cos45°=
3
4

④sin280°+cos270°-sin80°cos70°=
3
4
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市汽車牌照號碼可以上網(wǎng)自編,但規(guī)定從左到右第二個號碼只能從字母B、C、D中選擇,其他四個號碼可以從0~9這十個數(shù)字中選擇(數(shù)字可以重復(fù)),某車主第一個號碼(從左到右)只想在數(shù)字3、5、6、8、9中選擇,其他號碼只想在1、3、6、9中選擇,則他的車牌號碼可選的所有可能情況有.( 。
A、180種B、360種
C、720種D、960種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(
x
+
3
x
)n
展開式中,各項系數(shù)的和與其各項二項式系數(shù)的和之比為64,則展開式中的常數(shù)項等于( 。
A、135B、270
C、540D、1218

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)數(shù)學(xué)測驗的成績都是正整數(shù),甲、乙兩人某次數(shù)學(xué)測驗成績都是兩位正整數(shù),且十位數(shù)字都是8,求甲、乙兩人此次數(shù)學(xué)成績的差的絕對值不超過2的概率.(畫圖解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)a,b,c滿足
5b≥2(a+c)
b2=ac
a>0
,若
5a+8b+4c
a+b
的最大值和最小值分別為M,m,則M+m的值為(  )
A、9
B、
32
3
C、
49
3
D、19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若A=
π
3
,求sin2B+sin2C的最大值.

查看答案和解析>>

同步練習(xí)冊答案