【題目】如圖,已知圓經(jīng)過橢圓的左右焦點,與橢圓在第一象限的交點為,且, , 三點共線.
(1)求橢圓的方程;
(2)設(shè)與直線(為原點)平行的直線交橢圓于兩點,當的面積取取最大值時,求直線的方程.
【答案】(1) ;(2) .
【解析】試題分析:(1)由題意把焦點坐標代入圓的方程求出 ,再由條件得為圓的直徑,且,根據(jù)勾股定理求出,根據(jù)橢圓的定義和依次求出的值,代入橢圓方程即可;
(2)由(1)求出的坐標,根據(jù)向量共線的條件求出直線的斜率,設(shè)直線的方程和的坐標,聯(lián)立直線方程和橢圓方程消去,利用韋達定理和弦長公式求出,由點到直線的距離公式求出點到直線的距離,代入三角形的面積公式求出,化簡后求最值即可.
試題解析:(1)∵, , 三點共線,∴為圓的直徑,且,
∴.由,得,∴,∵, ∴, ∴, .
∵,∴,∴橢圓的方程為. (2)由(1)知,點的坐標為,∴直線的斜率為,故設(shè)直線的方程為,將方程代入消去得: , 設(shè) ∴, , ,∴, 又:
=,∵點到直線的距離, ∴ ,
當且僅當,即時等號成立,此時直線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】已知是正數(shù)組成的數(shù)列, ,且點 在函數(shù)的圖象上.
(1)求數(shù)列的通項公式;
(2)若列數(shù)滿足,,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為響應(yīng)國家擴大內(nèi)需的政策,某廠家擬在2016年舉行某一產(chǎn)品的促銷獲得,經(jīng)調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元滿足(為常數(shù)).如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件.已知2016年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(成產(chǎn)投入成本包括生產(chǎn)固定投入和生產(chǎn)再投入兩部分).
(1)求常數(shù),并將該廠家2016年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);
(2)該廠家2016年的年促銷費用投入多少萬元時,廠家利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,將一塊直角三角形木板置于平面直角坐標系中,已知,點是三角形木板內(nèi)一點,現(xiàn)因三角形木板中陰影部分受到損壞,要把損壞部分鋸掉,可用經(jīng)過點的任一直線將三角形木板鋸成.設(shè)直線的斜率為.
(Ⅰ)求點的坐標及直線的斜率的范圍;
(Ⅱ)令的面積為,試求出的取值范圍;
(Ⅲ)令(Ⅱ)中的取值范圍為集合,若對恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以為極點, 軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,( )
(1)寫出直線經(jīng)過的定點的直角坐標,并求曲線的普通方程;
(2)若,求直線的極坐標方程,以及直線與曲線的交點的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1 .
(1)求證:AB1⊥平面A1BC1;
(2)若D為B1C1的中點,求AD與平面A1BC1所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 , 是坐標原點, 分別為其左右焦點, , 是橢圓上一點, 的最大值為
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓交于兩點,且
(i)求證: 為定值;
(ii)求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù), = .
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個零點.
(1)求滿足條件的最小正整數(shù)的值;
(2)求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com