給出下列4個命題:
a
b
?
a
b
=0
;
②矩形都不是梯形;
③?x,y∈R,x2+y2≤1;
④任意互相垂直的兩條直線的斜率之積等于-1.其中全稱命題是______.
①“
a
b
?
a
b
=0
”等價于“對任意的
a
b
?
a
b
=0
”,
∴①是全稱命題;
②“矩形都不是梯形”等價于“任意的矩形都不是梯形”,
∴②是全稱命題;
③?x,y∈R,x2+y2≤1,不含有全稱量詞,
∴③不是全稱命題;
④任意互相垂直的兩條直線的斜率之積等于-1.
含有全稱量詞任意,∴④是全稱命題.
故答案為:①②④.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

10、已知函數(shù)f(x)=x3+bx2+cx+d(b,c,d為常數(shù)),當k∈(-∞,0)∪(4,+∞)時,f(x)-k=0只有一個實根;當k∈(0,4)時,f(x)-k=0只有3個相異實根,現(xiàn)給出下列4個命題:
①f(x)=4和f′(x)=0有一個相同的實根;
②f(x)=0和f′(x)=0有一個相同的實根;
③f(x)+3=0的任一實根大于f(x)-1=0的任一實根;
④f(x)+5=0的任一實根小于f(x)-2=0的任一實根.
其中正確命題的序號是
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列4個命題:
①函數(shù)f(x)=x|x|+ax+m是奇函數(shù)的充要條件是m=0:
②若函數(shù)f(x)=log(ax+1)的定義域是{x|x<l},則a<-1;
③若loga2<logb2,則
lim
n→∞
an-bn
an+bn
=1(其中n∈N+);
④圓:x2+y2-10x+4y-5=0上任意點M關(guān)于直線ax-y-5a=2的對稱點,M′也在該圓上填上所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16、給出下列4個命題:
①若一個函數(shù)的圖象與其反函數(shù)的圖象有交點,則交點一定在直線y=x上;
②函數(shù)y=f(1-x)的圖象與函數(shù)y=f(1+x)的圖象關(guān)于直線x=1對稱;
③若奇函數(shù)y=f(x)的圖象關(guān)于直線x=a對稱,則y=f(x)的周期為2a;
④已知集合A={1,2,3},B={4,5},則以A為定義域,以B為值域的函數(shù)有8個.
在上述四個命題中,所有不正確命題的序號是
①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知函數(shù)方程f(x)=x3+bx2+cx+d(b,c,d為常數(shù)),當k∈(-∞,0)∪(4,+∞)時,方程f(x)-k=0有且僅有一個實根,當k∈(0,4)時,方程f(x)-k=0有3個相異實根.給出下列4個命題:
①方程f(x)=4和f'(x)=0有且僅有一個相同的實根;
②方程f(x)=0和f'(x)=0有且僅有一個相同的實根;
③方程f(x)+3=0的任一實根都大于f(x)-1=0的任一實根;
④方程f(x)+5=0的任一實根都小于f(x)-2=0的任一實根.
其中正確命題的序號是
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列4個命題:
①函數(shù)f(x)=x|x|+ax+m是奇函數(shù)的充要條件是m=0;
②若函數(shù)f(x)=lg(ax+1)的定義域是{x|x<1},則a<-1;
③函數(shù)f(x)=e-xx2的極小值為f(0),極大值為f(2);
④圓:x2+y2-10x+4y-5=0上任意點M關(guān)于直線ax-y-5a=2的對稱點M'也在該圓上.
所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案