(滿分10分)向量=(k, 12), =(4, 5), =(10, k), 當(dāng)k為何值時,A、B、C三點共線。

 

【答案】

k=-2或k= 11

【解析】本試題主要是考查了向量的共線的運(yùn)用。利用向量共線得到向量坐標(biāo)的關(guān)系式,然后得到參數(shù)k的值。向量共線,且有一個公共點時,則可以證明三點共線這個方法很重要。需要用心體會。

解:…………….2分

………………………….4分

…………………………..6分

k=-2或k= 11………………………………………….10分

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A.選修4-1:幾何證明選講
如圖,圓O1與圓O2內(nèi)切于點A,其半徑分別為r1與r2(r1>r2 ).圓O1的弦AB交圓O2于點C ( O1不在AB上).求證:AB:AC為定值.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,求過橢圓
x=5cosφ
y=3sinφ
(φ為參數(shù))的右焦點,且與直線
x=4-2t
y=3-t
(t為參數(shù))平行的直線的普通方程.
D.選修4-5:不等式選講(本小題滿分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設(shè)a,b,c均為正實數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省蘇北四市高三第三次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

選修4-2:矩陣與變換(本小題滿分10分)

已知矩陣M

(1)  求矩陣M的逆矩陣;

(2)  求矩陣M的特征值及特征向量;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆甘肅省高三9月月考理科數(shù)學(xué)試卷 題型:解答題

(本題滿分10分)  若向量,其中,設(shè)

 

函數(shù),其周期為,且是它的一條對稱軸。

 

(1)求的解析式;

(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍。

 

 

查看答案和解析>>

同步練習(xí)冊答案