已知數(shù)列{an}和{bn}的通項(xiàng)公式分別為an=3n+5,bn=4n+8,則它們的公共項(xiàng)組成的新數(shù)列{cn}的通項(xiàng)公式為cn=
 
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:數(shù)列{an}和{bn}的公共項(xiàng)組成的新數(shù)列{cn}的公差為12,再由第一個(gè)公共項(xiàng)c1=20,能求出結(jié)果.
解答: 解:∵數(shù)列{an}和{bn}的通項(xiàng)公式分別為an=3n+5,bn=4n+8,
∴數(shù)列{an}的公差為3,{bn}的公差為4,
∴它們的公共項(xiàng)組成的新數(shù)列{cn}的公差為12,
再由第一個(gè)公共項(xiàng)c1=20,
∴{cn}是首項(xiàng)為20,公差為12的等差數(shù)列,
∴cn=12n+8.
故答案:cn=12n+8.
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1
1-lgx
的定義域?yàn)?div id="ougr8tl" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax4-4ax2+b(a>0,1≤x≤2)的最大值為3,最小值為-5,則a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若[x]表示不超過(guò)x的最大整數(shù)(如[1.3]=1,[-2
1
4
]=-3等等),則[
1
2-
1×2
]+[
1
3-
2×3
]+[
1
4-
3×4
]+…+[
1
2004-
2003×2004
]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知ABC-A1B1C1是各條棱長(zhǎng)均等于2的正三棱柱,D是側(cè)棱CC1的中點(diǎn).點(diǎn)C到平面AB1D的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表
廣告費(fèi)用x(萬(wàn)元)4235
銷售額y(萬(wàn)元)49263954
根據(jù)上表可得回歸方程
y
=
b
x+
a
中的
b
為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí)銷售額為
 
(保留一位小數(shù)).
參考公式:b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式x2-ax-a>0在x∈[0,2]時(shí)恒成立,則實(shí)數(shù)a的取值范圍為( 。
A、(
4
3
,+∞)
B、(0,
4
3
C、[0,
4
3
]
D、(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=xlnx,則f(x)的極小值點(diǎn)為( 。
A、x=e
B、x=ln2
C、x=e2
D、x=
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在R上可導(dǎo)的函數(shù)f(x)=
1
3
x3+
1
2
ax2+2bx+c,當(dāng)x∈(0,1)時(shí)取得極大值,當(dāng)x∈(1,2)時(shí)取得極小值,則
b-4
a-3
的取值范圍是(  )
A、(-
1
2
1
2
B、(-
1
2
,
1
4
C、(
1
4
,1)
D、(
1
2
,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案