9.設f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,(x≤1)}\\{lo{g}_{2}x,(x>1)}\end{array}\right.$,則f(1)+f(4)=(  )
A.5B.6C.7D.8

分析 直接利用分段函數(shù)求解函數(shù)值即可.

解答 解:f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,(x≤1)}\\{lo{g}_{2}x,(x>1)}\end{array}\right.$,
則f(1)+f(4)=21+1+log24=5.
故選:A.

點評 本題考查函數(shù)值的求法,分段函數(shù)的應用,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.化簡:
(1)sin(π+α)cos(-α)+sin(2π-α)cos(π-α);
(2)sinαcos(π+α)tan(-π-α).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.解方程
(1)${9}^{{x}^{2}-3x}$=$\frac{1}{81}$
(2)log4(3-x)=log4(2x+1)+log4(3+x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在平面直角坐標系xoy中,已知圓C:x2+y2-(6-2m)x-4my+5m2-6m=0,直線l經(jīng)過點(-1,1),若對任意的實數(shù)m,直線l被圓C截得的弦長都是定值,則直線l的方程為2x+y+1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.(1)計算:${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{(2\frac{7}{9})^{\frac{1}{2}}}-{(π-1)^0}+{100^{\frac{1}{2}lg9+lg2}}$;
(2)已知log23=a,log37=b,試用a,b表示log1456.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$f(x)={({\frac{1}{2}})^x}$,函數(shù)$g(x)={log_{\frac{1}{2}}}$x.
(1)若g(mx2+2x+m)的定義域為R,求實數(shù)m的取值范圍;
(2)當x∈[-1,1]時,求函數(shù)y=[f(x)]2-2af(x)+3的最小值h(a);
(3)是否存在非負實數(shù)m、n,使得函數(shù)$y={log_{\frac{1}{2}}}f({x^2})$的定義域為[m,n],值域為[2m,2n],若存在,求出m、n的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\vec a•\vec b+\frac{1}{2}$,其中$\vec a=(\sqrt{3}sinx-cosx,-1)$,$\vec b=(cosx,1)$.
(1)求函數(shù)f(x)的最小正周期及單調(diào)區(qū)間;
(2)設△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,且c=3,f(C)=0,若sin(A+C)=2sinA,求a、b值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.命題“?x<0,x2-x+1>0”的否定是?x<0,x2-x+1≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知公差不為零的等差數(shù)列{an}的前3項和S3=9,且a1、a2、a5成等比數(shù)列.求數(shù)列{an}的通項公式及前n項的和Sn

查看答案和解析>>

同步練習冊答案