5.已知函數(shù)f(x)=2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+2cos2$\frac{x}{2}$.
(1)求的最小正周期和在$[\frac{π}{6},π]$上單調(diào)遞減區(qū)間;
(2)在△A BC中,角 A,B,C的對邊分別是a,b,c,且若f( B)=3,b=3,求a+c的取值范圍.

分析 (1)利用三角函數(shù)恒等變換的應(yīng)用化簡可得解析式f(x)=2sin(x+$\frac{π}{6}$)+1,利用周期公式可得最小正周期,由2kπ+$\frac{π}{2}$≤x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z可解得函數(shù)f(x)的單調(diào)遞減區(qū)間,從而得解在$[\frac{π}{6},π]$上單調(diào)遞減區(qū)間.
(2)由f( B)=3,解得:sin(B+$\frac{π}{6}$)=1,結(jié)合范圍B∈(0,π),利用正弦函數(shù)的圖象和性質(zhì)可求B,由余弦定理可得:9=a2+c2-ac=(a+c)2-3ac,由基本不等式可得9≥ac,從而解得a+c≤6,由兩邊之和大于第三邊可得a+c>b=3,從而可得a+c的取值范圍.

解答 解:(1)∵f(x)=2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+2cos2$\frac{x}{2}$=$\sqrt{3}$sinx+1+cosx=2sin(x+$\frac{π}{6}$)+1,
∴最小正周期T=$\frac{2π}{1}=2π$.
∴由2kπ+$\frac{π}{2}$≤x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z可解得函數(shù)f(x)的單調(diào)遞減區(qū)間為:[2kπ$+\frac{π}{3}$,2kπ+$\frac{4π}{3}$],k∈Z,
∴在$[\frac{π}{6},π]$上單調(diào)遞減區(qū)間為:[$\frac{π}{3}$,π].
(2)∵f( B)=3,即:2sin(B+$\frac{π}{6}$)+1=3,解得:sin(B+$\frac{π}{6}$)=1,
∵B∈(0,π),B+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{7π}{6}$),
∴B+$\frac{π}{6}$=$\frac{π}{2}$,解得:B=$\frac{π}{3}$,
∵b=3,
∴由余弦定理可得:9=a2+c2-ac=(a+c)2-3ac,
∵由a2+c2≥2ac,可得:9≥ac,可得:(a+c)2=9+3ac≤36,解得:a+c≤6.
又∵a+c>b=3,
∴解得:3<a+c≤6.

點(diǎn)評 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì),余弦定理,基本不等式的綜合應(yīng)用,考查了轉(zhuǎn)化思想和計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)=$\left\{\begin{array}{l}{(3-a)x,x∈(-∞,2]}\\{{a}^{x-1},x∈(2,+∞)}\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A.(1,3)B.(1,2)C.[2,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=${x^2}+\frac{9}{1+|x|}$是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等比數(shù)列{an}的公比大于零,a1+a2=3,a3=4,數(shù)列{bn}是等差數(shù)列,${b_n}=\frac{{n({n+1})}}{n+c}$,c≠0是常數(shù).
(1)求的值,數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足:當(dāng)n為偶數(shù)時cn=an,當(dāng)n為奇數(shù)時cn=bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,且$\frac{2b-c}{a}=\frac{cosC}{cosA}$
(Ⅰ)求角A的大;
(Ⅱ)若a=$\sqrt{3}$,求b2+c2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.判斷下列函數(shù)的奇偶性:
(1)f(x)=$\sqrt{2}$sin(2x+$\frac{5}{2}$π);
(2)f(x)=$\sqrt{2sinx-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的右焦點(diǎn)為F,短軸的一個端點(diǎn)為M,直線l:3x-4y=0交橢圓E于A,B兩點(diǎn),若|AF|十|BF|=4,點(diǎn)M到直線l的距離不小于$\frac{4}{5}$,則橢圓E的離心率的取值范圍是(0,$\frac{\sqrt{3}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的上頂點(diǎn)為P,左右焦點(diǎn)為F1,F(xiàn)2,左右頂點(diǎn)為D,E,過原點(diǎn)O不垂直x軸的直線與橢圓C交于A,B兩點(diǎn).

(Ⅰ)若橢圓的離心率為$\frac{1}{2}$,F(xiàn)2(1,0),
①求橢圓的方程;
②連接AE,BE與右準(zhǔn)線交于點(diǎn)N,M,則在x軸上是否存在定點(diǎn)T,使TM⊥TN,若存在,求出點(diǎn)T的坐標(biāo),若不存在說明理由.
(Ⅱ)若直線PF1∥AB,且PF1與橢圓交于點(diǎn)Q,$\frac{AB}{PQ}=\frac{\sqrt{5}}{2}$,求橢圓離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,角A、B、C的對邊分別為a、b、c,3(b2+c2)=3a2+2bc,且△ABC的面積S=5$\sqrt{2}$,則邊長a的最小值為( 。
A.20B.2$\sqrt{5}$C.$\sqrt{5}$D.10

查看答案和解析>>

同步練習(xí)冊答案