已知橢圓方程為x2+4y2=16,求出其頂點、焦點坐標及離心率.
考點:橢圓的標準方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:把橢圓方程轉(zhuǎn)化為標準方程,求出a,b,c,由此能求出橢圓的頂點、焦點坐標及離心率.
解答: 解:∵橢圓方程為x2+4y2=16,
∴橢圓的標準方程為:
x2
16
+
y2
4
=1

 a=4, b=2 c=2
3
,
∴頂點坐標為(±4,0),(0,±2),
焦點坐標為(±2
3
,0)
,
離心率為e=
c
a
=
3
2
點評:本題考查橢圓的簡單性質(zhì)的應(yīng)用,是基礎(chǔ)題,解題時要注意把橢圓方程轉(zhuǎn)化為標準方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Acos(ωx+θ)(x∈R,ω>0,0≤θ≤
π
2
)的圖象如圖所示,則f(
π
4
)=( 。
A、0
B、-1
C、-
3
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線l1:x+y-1=0以及l(fā)1上一點P(-2,3),直線l2:4x+y=0,求圓心在l2上且與直線l1相切于點P的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alog22x+2alog2x+1在區(qū)間[
1
8
,4]上的最大值為4,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線y=x2-1的一條切線平行于直線y=4x-3,求這條切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓C經(jīng)過點A(2,-3)和B(-2,-5).
(Ⅰ)若圓C的圓心在直線3x+y+5=0上,求圓C的方程;
(Ⅱ)若圓心C在x軸上,且使得三角形ABC面積為5,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計算:
(log25)2-4log25+4
+log2
1
5

(2)(log43+log83)(log32+log92).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了保護水資源,提倡節(jié)約用水,某市對居民生活用水收費標準如下:每戶每月用水不超過6噸時每噸3元,當用水超過6噸但不超過15噸時,超過部分每噸5元,當用水超過15噸時,超過部分每噸10元.
(1)求水費y(元)關(guān)于用水量x(噸)之間的函數(shù)關(guān)系式;
(2)若某戶居民某月所交水費為93元,試求此用戶該月的用水量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心角為
π
3
弧度,半徑為6的扇形的面積為
 

查看答案和解析>>

同步練習(xí)冊答案