精英家教網 > 高中數學 > 題目詳情
定義在R上的增函數f(x),若對任意的t∈R,都有f(-1+t)+f(-1-t)=2,當m+n<-2時,有( 。
A.f(m+n)>1B.f(m+n)<1C.f(m)+f(n)>2D.f(m)+f(n)<2
因為任意的t∈R,都有f(-1+t)+f(-1-t)=2,
當t=0,得f(-1)=1,
因為在R上的增函數f(x),m+n<-2,
所以f(m+n)<f(-2),
又f(-2)<f(-1)=1,
所以f(m+n)<1.
故選B.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

16、定義在R+上的增函數f(x)滿足f(2)=1,f(xy)=f(x)+f(y),
(1)求f(1)、f(4)的值;
(2)若f(x)+f(5-x)>2,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R+上的增函數f(x)滿足f(2)=1,f(xy)=f(x)+f(y),
(1)求f(1)、f(4)的值;
(2)若f(x)+f(x-3)≤2,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的增函數f(x)滿足f(-x)+f(x)=0,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,則f(x1)+f(x2)+f(x3)的值( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的增函數f(x),若對任意的t∈R,都有f(-1+t)+f(-1-t)=2,當m+n<-2時,有( 。

查看答案和解析>>

同步練習冊答案