【題目】已知是定義在上的奇函數(shù),且,對任意的 時(shí),有成立.

(1)判斷上的單調(diào)性,并用定義證明;

(2)解不等式;

(3)若對任意的恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)證明見解析;(2);(3).

【解析】

1)利用函數(shù)單調(diào)性的定義,結(jié)合函數(shù)為奇函數(shù)以及題目所給已知條件,證得,由此判斷出函數(shù)上遞增.(2)根據(jù)函數(shù)的定義域和單調(diào)性列不等式組,解不等式組求得不等式的解集.(3)根據(jù)的單調(diào)性,將問題轉(zhuǎn)化為,對恒成立問題來求解,構(gòu)造函數(shù),結(jié)合一次函數(shù)的性質(zhì)列不等式,解不等式求得的取值范圍.

(1)證明任取,則,

為奇函數(shù),∴,

由已知得,,

,即,∴上單調(diào)遞增.

(2)∵上單調(diào)遞增,∴,解得 .

不等式的解集為

(3)∵,上單調(diào)遞增,∴在上,.

問題轉(zhuǎn)化為,即,對恒成立.

設(shè).

①若,則,對恒成立.

②若,則的一次函數(shù),若,對恒成立,必須,且,∴.

的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)商場經(jīng)銷某種商品,根據(jù)以往資料統(tǒng)計(jì),每位顧客采用的分期付款次數(shù)的分布列為:

1

2

3

4

5

0.4

0.2

0.2

0.1

0.1

商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;采用2期或3期付款,其利潤為250元;采用4期或5期付款,其利潤為300元.表示經(jīng)銷一件該商品的利潤.

(1)求購買該商品的3位顧客中,恰有2位采用1期付款的概率;

(2)求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn)( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】五個(gè)人站成一排,求在下列條件下的不同排法種數(shù):
(1)甲必須在排頭;
(2)甲、乙相鄰;
(3)甲不在排頭,并且乙不在排尾;
(4)其中甲、乙兩人自左向右從高到矮排列且互不相鄰

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在( n的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(1)求n;
(2)求含x2項(xiàng)的系數(shù);
(3)求展開式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)滿足.且

(1)求的解析式;

(2)若在區(qū)間[-1,1]上不等式恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為某班35名學(xué)生的投籃成績(每人投一次)的條形統(tǒng)計(jì)圖,其中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全。已知該班學(xué)生投籃成績的中位數(shù)是5,則根據(jù)統(tǒng)計(jì)圖,則下列說法錯(cuò)誤的是( )

A. 3球以下(含3球)的人數(shù)為10

B. 4球以下(含4球)的人數(shù)為17

C. 5球以下(含5球)的人數(shù)無法確定

D. 5球的人數(shù)和6球的人數(shù)一樣多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, ,四邊形是邊長為的正方形,平面平面,若, 分別是的中點(diǎn).

(1)求證: 平面;

(2)求證:平面平面;

(3)求幾何體的體和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點(diǎn),且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.

(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點(diǎn),求CM與平面A1BE所成角的大小;
(3)線段BC上是否存在點(diǎn)P,使平面A1DP與平面A1BE垂直?說明理由.

查看答案和解析>>

同步練習(xí)冊答案