【題目】按照我國《機動車交通事故責任強制保險條例》規(guī)定,交強險是車主必須為機動車購買的險種,若普通7座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是保費浮動機制,保費與上一、二、三個年度車輛發(fā)生道路交通事故的情況相關聯(lián),發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和浮動費率比率表

投保類型

浮動因素

浮動比率

上一個年度未發(fā)生有責任道路交通事故

下浮10%

上兩個年度未發(fā)生有責任道路交通事故

下浮20%

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責任不涉及死亡的道路交通事故

上浮10%

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機構(gòu)為了研究某一品牌普通7座以下私家車的投保情況,隨機抽取了80輛車齡已滿三年的該品牌同型號私家車在下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數(shù)量

20

10

10

20

15

5

以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)某家庭有一輛該品牌車且車齡剛滿三年,記為該車在第四年續(xù)保時的費用,求的分布列;

(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基準保費的車輛記為事故車.

若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有2輛事故車的概率;

②假設購進一輛事故車虧損4000元,一輛非事故盈利8000元,若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求其獲得利潤的期望值.

【答案】(1)見解析;(2);②見解析.

【解析】分析:(1)根據(jù)題意可知的可能取值為,由統(tǒng)計數(shù)據(jù)可知其概率,進而得分布列;

(2)①由統(tǒng)計數(shù)據(jù)可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為,三輛車中至少有2輛事故車的概率為;

(3)為該銷售商購進并銷售一輛二手車的利潤,的可能取值為,即可得出分布列與數(shù)學期望.

詳解:(1)由題意可知的可能取值為,由統(tǒng)計數(shù)據(jù)可知:

,

所以的分布列為

(2)①由統(tǒng)計數(shù)據(jù)可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為,三輛車中至少有2輛事故車的概率為

②設為該銷售商購進并銷售一輛二手車的利潤,的可能取值為.

所以的分布列為:

-4000

8000

所以,

所以該銷售商一次購進100輛該品牌車齡已滿三年的二手車獲得利潤的期望為萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意,都有,且對任意∈D,當時,恒成立,則稱函數(shù)為區(qū)間D上的平底型函數(shù).

)判斷函數(shù)是否為R上的平底型函數(shù)? 并說明理由;

)設是()中的平底型函數(shù),k為非零常數(shù),若不等式對一切R恒成立,求實數(shù)的取值范圍;

)若函數(shù)是區(qū)間上的平底型函數(shù),求的值.

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球為白球的概率是多少?

2)摸出的3個球為2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1)求實數(shù)的值;

(2)判斷的單調(diào)性并用定義證明;

(3)已知不等式恒成立, 求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)若,求的最大值;

(2)當時,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最大值為.

(1)若關于的方程的兩個實數(shù)根為,求證:

(2)當時,證明函數(shù)在函數(shù)的最小零點處取得極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判斷f(x)的奇偶性并證明你的結(jié)論;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)zbi(bR),是純虛數(shù),i是虛數(shù)單位.

(1)求復數(shù)z;

(2)若復數(shù)(mz)2所表示的點在第二象限,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=xex

1)求函數(shù)fx)的極值.

2)若fx)﹣lnxmx1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案