如圖,已知P是正方形ABCD外一點,且PA=3,PB=4,則PC的最大值是___________.
【解析】
試題分析:過B作BE⊥BP,使E、A在BP的兩側(cè),且BE=PB=4。顯然有:PE=.
∵ABCD是正方形,∴∠ABC=90°、AB=BC!唷螾BE+∠PBA=∠ABC+∠PBA=90°+∠PBA,∴∠ABE=∠CBP!連E=BP、AB=BC、∠ABE=∠CBP,∴△ABE≌△CBP,∴AE=PC?疾镻、A、E三點,顯然有:AEPA+PE=3+。∴當點P落在線段AE上時,AE有最大值為,∴PC的最長距離為
考點:三角形全等 三角形三邊關(guān)系
點評:本題的關(guān)鍵是能巧妙利用三角形全等的知識,構(gòu)造全等三角形,把求PC的長轉(zhuǎn)化成
求AE的長,屬難題.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)= +x+y;??
(2) =x+y+.?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com