已知在區(qū)間(0,+∞)上函數(shù)f(x)是減函數(shù),且當(dāng)x>0時(shí),f(x)>0,若0<a<b,則( )
A.bf(a)<af(b)
B.a(chǎn)f(a)<f(b)
C.a(chǎn)f(b)<bf(a)
D.bf(b)<f(a)
【答案】分析:根據(jù)已知條件及0<a<b可得f(a)>f(b)>0,由b>a>0利用不等式的同項(xiàng)同正的可乘性可得
解答:解:因?yàn)楹瘮?shù)在區(qū)間(0,+∞)是減函數(shù)且x>0時(shí),f(x)>0
∵0<a<b
∴f(a)>f(b)>0
∵b>a>0
∴bf(a)>af(b)
故選C.
點(diǎn)評(píng):本題主要考查了函數(shù)的單調(diào)性的應(yīng)用,及不等式的同向同正的可乘性(若a>b>0,c>d>0,則ac>bd>0)的應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在區(qū)間(0,+∞)上函數(shù)f(x)是減函數(shù),且當(dāng)x>0時(shí),f(x)>0,若0<a<b,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省淮安市楚州中學(xué)高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本題滿分16分)
已知函數(shù),且對(duì)任意,有.
(1)求;
(2)已知在區(qū)間(0,1)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
(3)討論函數(shù)的零點(diǎn)個(gè)數(shù)?(提示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省淮安五校高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本題滿分16分)

已知函數(shù),且對(duì)任意,有.

(1)求;

(2)已知在區(qū)間(0,1)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

(3)討論函數(shù)的零點(diǎn)個(gè)數(shù)?(提示:)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省淮安市高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本題滿分16分)

已知函數(shù),且對(duì)任意,有.

(1)求;

(2)已知在區(qū)間(0,1)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

(3)討論函數(shù)的零點(diǎn)個(gè)數(shù)?(提示:)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù),且對(duì)任意,有.

(1)求

(2)已知在區(qū)間(0,1)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

(3)討論函數(shù)的零點(diǎn)個(gè)數(shù)?(提示:)

查看答案和解析>>

同步練習(xí)冊(cè)答案