已知拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),焦點(diǎn)坐標(biāo)為F(2,0),點(diǎn)P的坐標(biāo)為(m,0)(m≠0),設(shè)過(guò)點(diǎn)P的直線(xiàn)l交拋物線(xiàn)C于A,B兩點(diǎn),點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為點(diǎn)Q.
(1)當(dāng)直線(xiàn)l的斜率為1時(shí),求△QAB的面積關(guān)于m的函數(shù)表達(dá)式.
(2)試問(wèn)在x軸上是否存在一定點(diǎn)T,使得TA,TB與x軸所成的銳角相等?若存在,求出定點(diǎn)T 的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)將拋物線(xiàn)C的方程y2=8x與直線(xiàn)l的方程y=x-m聯(lián)立,設(shè)A(x1,y1),B(x2,y2),由韋達(dá)定理求得弦|AB|,從而可求得△QAB的面積關(guān)于m的函數(shù)表達(dá)式;
(2)將y=k(x-m)與y2=8x聯(lián)立,設(shè)A(x3,y3),B(x4,y4),設(shè)點(diǎn)T(t,0)存在,由TA,TB與x軸所成的銳角相等可得kTA+kTB=0,利用韋達(dá)定理,即可求得t=-m.
解答:解:(1)由條件知,拋物線(xiàn)C的方程為y2=8x,直線(xiàn)l的方程為y=x-m,點(diǎn)Q(-m,0),
得:x2-2(m+4)x+m2=0.①
由①式判別式△>0,得m>-2.
設(shè)A(x1,y1),B(x2,y2),則x1+x2=2(m+4),x1x2=m2,
|AB|=|x1-x2|==8
又∵點(diǎn)Q(-m,0)到直線(xiàn)l1的距離d=|m|,
∴S△QAB=|m|•8=4,其中m>-2且m≠0…7
(2)方程為y=k(x-m),由得:k2x2-2(mk2+4)x+k2m2=0.②
設(shè)A(x3,y3),B(x4,y4),則x3+x4=,x3x4=m2
設(shè)點(diǎn)T(t,0)存在,TA,TB與x軸所成的銳角相等,kTA+kTB=0,=0,
=0,
整理得:2x3x4-(m+t)(x3+x4)+2mt=0,
∴2m2-(m+t)+2mt=0,
∴t=-m.
∴符合條件的點(diǎn)T存在,其坐標(biāo)為T(mén)(-m,0)…15
點(diǎn)評(píng):本題考查直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題,著重考查曲線(xiàn)方程的聯(lián)立,韋達(dá)定理的使用,弦長(zhǎng)公式的應(yīng)用,突出考查化歸思想與方程思想,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(0,1).
(Ⅰ)求拋物線(xiàn)C的方程;
(Ⅱ)在拋物線(xiàn)C上是否存在點(diǎn)P,使得過(guò)點(diǎn)P的直線(xiàn)交C于另一點(diǎn)Q,滿(mǎn)足PF⊥QF,且PQ與C在點(diǎn)P處的切線(xiàn)垂直?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•溫州一模)已知拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(0,1),且過(guò)點(diǎn)A(2,t),
(I)求t的值;
(II)若點(diǎn)P、Q是拋物線(xiàn)C上兩動(dòng)點(diǎn),且直線(xiàn)AP與AQ的斜率互為相反數(shù),試問(wèn)直線(xiàn)PQ的斜率是否為定值,若是,求出這個(gè)值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(
1
2
,0)
.(1)求拋物線(xiàn)C的方程; (2)已知直線(xiàn)y=k(x+
1
2
)
與拋物線(xiàn)C交于A、B 兩點(diǎn),且|FA|=2|FB|,求k 的值; (3)設(shè)點(diǎn)P 是拋物線(xiàn)C上的動(dòng)點(diǎn),點(diǎn)R、N 在y 軸上,圓(x-1)2+y2=1 內(nèi)切于△PRN,求△PRN 的面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F(1,0).
(Ⅰ)求拋物線(xiàn)C的方程;
(Ⅱ)命題:“過(guò)拋物線(xiàn)C的焦點(diǎn)F作與x軸不垂直的任意直線(xiàn)l交拋物線(xiàn)于A、B兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)交x軸于點(diǎn)M,則
|AB||FM|
為定值,且定值是2”.判斷它是真命題還是假命題,并說(shuō)明理;
(Ⅲ)試推廣(Ⅱ)中的命題,寫(xiě)出關(guān)于拋物線(xiàn)的一般性命題(注,不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C的頂點(diǎn)在坐標(biāo)原點(diǎn),以坐標(biāo)軸為對(duì)稱(chēng)軸,且焦點(diǎn)F(2,0).
(1)求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;
(2)直線(xiàn)l過(guò)焦點(diǎn)F與拋物線(xiàn)C相交與M,N兩點(diǎn),且|MN|=16,求直線(xiàn)l的傾斜角.

查看答案和解析>>

同步練習(xí)冊(cè)答案