已知橢圓的右焦點(diǎn)恰好是拋物線的焦點(diǎn),

點(diǎn)是橢圓的右頂點(diǎn).過點(diǎn)的直線交拋物線兩點(diǎn),滿足,

其中是坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)過橢圓的左頂點(diǎn)軸平行線,過點(diǎn)軸平行線,直線

相交于點(diǎn).若是以為一條腰的等腰三角形,求直線的方程

(1),,,設(shè)直線代入中,

整理得。設(shè),則,

, , 由    

,  解得  (舍),得

所以橢圓的方程為.                     (7分)

(2)橢圓的左頂點(diǎn),所以點(diǎn). 易證三點(diǎn)共線.

(I)當(dāng)為等腰的底邊時(shí),由于,是線段的中點(diǎn),

,所以,即直線的方程為;        (11分)

 (II) 當(dāng)為等腰的底邊時(shí),   又

     解得,   ,

所以直線的方程為,即;       (15分)

綜上所述,當(dāng)為等腰三角形時(shí),直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題15分)已知橢圓的右焦點(diǎn)恰好是拋物線的焦點(diǎn),

點(diǎn)是橢圓的右頂點(diǎn).過點(diǎn)的直線交拋物線兩點(diǎn),滿足,

其中是坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)過橢圓的左頂點(diǎn)軸平行線,過點(diǎn)軸平行線,直線

相交于點(diǎn).若是以為一條腰的等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧波市2010屆高三三模考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本小題15分)已知橢圓的右焦點(diǎn)恰好是拋物線的焦點(diǎn),

點(diǎn)是橢圓的右頂點(diǎn).過點(diǎn)的直線交拋物線兩點(diǎn),滿足

其中是坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)過橢圓的左頂點(diǎn)軸平行線,過點(diǎn)軸平行線,直線

相交于點(diǎn).若是以為一條腰的等腰三角形,求直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年寧夏高考數(shù)學(xué)模擬試卷1(理科)(解析版) 題型:解答題

已知橢圓的右焦點(diǎn)恰好是拋物線C:y2=4x的焦點(diǎn)F,點(diǎn)A是橢圓E的右頂點(diǎn).過點(diǎn)A的直線l交拋物線C于M,N兩點(diǎn),滿足OM⊥ON,其中O是坐標(biāo)原點(diǎn).
(1)求橢圓E的方程;
(2)過橢圓E的左頂點(diǎn)B作y軸平行線BQ,過點(diǎn)N作x軸平行線NQ,直線BQ與NQ相交于點(diǎn)Q.若△QMN是以MN為一條腰的等腰三角形,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)模擬組合試卷(2)(解析版) 題型:解答題

已知橢圓的右焦點(diǎn)恰好是拋物線C:y2=4x的焦點(diǎn)F,點(diǎn)A是橢圓E的右頂點(diǎn).過點(diǎn)A的直線l交拋物線C于M,N兩點(diǎn),滿足OM⊥ON,其中O是坐標(biāo)原點(diǎn).
(1)求橢圓E的方程;
(2)過橢圓E的左頂點(diǎn)B作y軸平行線BQ,過點(diǎn)N作x軸平行線NQ,直線BQ與NQ相交于點(diǎn)Q.若△QMN是以MN為一條腰的等腰三角形,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省寧波市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓的右焦點(diǎn)恰好是拋物線C:y2=4x的焦點(diǎn)F,點(diǎn)A是橢圓E的右頂點(diǎn).過點(diǎn)A的直線l交拋物線C于M,N兩點(diǎn),滿足OM⊥ON,其中O是坐標(biāo)原點(diǎn).
(1)求橢圓E的方程;
(2)過橢圓E的左頂點(diǎn)B作y軸平行線BQ,過點(diǎn)N作x軸平行線NQ,直線BQ與NQ相交于點(diǎn)Q.若△QMN是以MN為一條腰的等腰三角形,求直線MN的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案