已知函數(shù)f(x)=x2+(lga+2)x+lgb滿足f(-1)=-2且對(duì)于任意x∈R,恒有f(x)≥2x成立.
(1)求實(shí)數(shù)a,b的值;
(2)不等式f(x)≥a2-4a-15恒成立,求a的取值范圍.
考點(diǎn):函數(shù)恒成立問題
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由f(-1)=-2可得lgb-lga+1=0①,即
a
b
=10
②,由f(x)≥2x恒成立,即x2+x•lga+lgb≥0恒成立,得△=(lga)2-4lgb≤0,聯(lián)立①消掉a可求得b,代入②即得a.
(2)要使f(x)≥a2-4a-15恒成立,只需a2-4a-15≤f(x)min,根據(jù)二次函數(shù)的性質(zhì)可求得f(x)min
解答: 解:(1)由f(-1)=-2知,lgb-lga+1=0①,∴
a
b
=10
②,
又f(x)≥2x恒成立,有x2+x•lga+lgb≥0恒成立,
故△=(lga)2-4lgb≤0.
將①式代入式得:(lgb)2-2lgb+1≤0,即(lgb-1)2≤0,
故lgb=1,即b=10,代入②得,a=100.
(2)要使f(x)≥a2-4a-15恒成立,只需a2-4a-15≤f(x)min
由(1)知f(x)=x2+4x+1=(x+2)2-3≥-3,
∴a2-4a-15≤-3,解得-2≤a≤6,
故實(shí)數(shù)a的取值范圍是[-2,6].
點(diǎn)評(píng):本題考查對(duì)數(shù)運(yùn)算、函數(shù)恒成立問題,考查轉(zhuǎn)化思想,恒成立問題常轉(zhuǎn)化為函數(shù)最值解決,若為二次函數(shù)恒成立,則常結(jié)合圖象處理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),與直線y=b相切的⊙F2交橢圓于點(diǎn)E,且點(diǎn)E是直線EF1與⊙F2的切點(diǎn),則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-3x+2在x∈[0,2]的最小值為( 。
A、-1B、0C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:3x+2ay-5=0,l2:(3a-1)x-ay-2=0,若l1∥l2,則a的值為( 。
A、-
1
6
B、6
C、0
D、0或-
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函f(x)=ex•(cosx-sinx),將滿足f′(x)=0的所有正數(shù)x從小到大排成數(shù)列{xn},記an=f(xn)(n∈N*),bn=ln|an|.
(1)證明數(shù)列{an}為等比數(shù)列; 
(2)求數(shù)列{bn}的前n項(xiàng)的和;
(3)若cn=2n-1•bn,求數(shù)列{cn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,2an+1=an+1,求數(shù)列{an}的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(Ⅰ)若函數(shù)f(x)的最小值是f(-1)=0,且c=1,又F(x)=
f(x)(x>0)
-f(x)(x<0)
,求F(2)+F(-2)的值;
(Ⅱ)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]上恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=pn2+qn.
(1)當(dāng)p,q滿足什么條件時(shí),數(shù)列{an}是等差數(shù)列;
(2)求證:對(duì)任意實(shí)數(shù)p、q,數(shù)列{an+1-an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(
a
+
b
)⊥(2
a
-
b
),(
a
-2
b
)⊥(2
a
+
b
),則
a
,
b
的夾角余弦值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案