已知橢圓C的左、右焦點坐標(biāo)分別是(-
2
,0)
,(
2
,0)
,離心率是
6
3
,直線y=t橢圓C交與不同的兩點M,N,以線段為直徑作圓P,圓心為P.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若圓P與x軸相切,求圓心P的坐標(biāo);
(Ⅲ)設(shè)Q(x,y)是圓P上的動點,當(dāng)T變化時,求y的最大值.
(Ⅰ)因為
c
a
=
6
3
,且c=
2
,所以a=
3
,b=
a2-c2
=1

所以橢圓C的方程為
x2
3
+y2=1

(Ⅱ)由題意知p(0,t)(-1<t<1)
y=t
x2
3
+y2=1
x=±
3(1-t2)

所以圓P的半徑為
3(1-t2)
,
則有t2=3(1-t2),
解得t=±
3
2
所以點P的坐標(biāo)是(0,±
3
2

(Ⅲ)由(Ⅱ)知,圓P的方程x2+(y-t)2=3(1-t2).因為點Q(x,y)在圓P上.所以y=t±
3(1-t2)-x2
≤t+
3(1-t2)

設(shè)t=cosθ,θ∈(0,π),則t+
3(1-t2)
=cosθ+
3
sinθ=2sin(θ+
π
6
)

當(dāng)θ=
π
3
,即t=
1
2
,且x=0,y取最大值2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,并且直線y=x+b是拋物線C2:y2=4x的一條切線.
(Ⅰ)求橢圓C1的方程.
(Ⅱ)過點S(0,-
1
3
)
的動直線l交橢圓C1于A、B兩點,試問:在直角坐標(biāo)平面上是否存在一個定點T,使得以AB為直徑的圓恒過定點T?若存在求出T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y=x2上有一條長為2的動弦AB,則AB中點M到x軸的最短距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知離心率為
3
2
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>o)過點M(2,1),O為坐標(biāo)原點,平行于OM的直線l交橢圓于C不同的兩點A,B.
(1)求橢圓的C方程.
(2)證明:若直線MA,MB的斜率分別為k1、k2,求證:k1+k2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,|
F1F2
|=2
,離心率e=
1
2
,過橢圓右焦點F2的直線l與橢圓C交于M,N兩點.
(1)求橢圓C的方程;
(2)設(shè)直線l的傾斜角為
π
4
,求線段MN中點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
3
2
,且過點(
3
,
1
2

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l:y=kx+m(k≠0,m>0)與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)a、b是非零實數(shù),則方程bx2+ay2=ab及ax+by=0所表示的圖形可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點F是雙曲線C:x2-y2=2的左焦點,直線l與雙曲線C交于A、B兩點,
(1)若直線l過點P(1,2),且
OA
+
OB
=2
OP
,求直線l的方程.
(2)若直線l過點F且與雙曲線的左右兩支分別交于A、B兩點,設(shè)
FB
FA
,當(dāng)λ∈[6,+∞)時,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A(-3,0),B(3,0).若△ABC周長為16.
(1)求點C軌跡L的方程;
(2)過O作直線OM、ON,分別交軌跡L于M、N點,且OM⊥ON,求S△MON的最小值;
(3)在(2)的前提下過O作OP⊥MN交于P點.求證點P在定圓上,并求該圓的方程.

查看答案和解析>>

同步練習(xí)冊答案