已知二次函數(shù)y=x2-2ax+1在區(qū)間(2,3)內(nèi)是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A、a≤2或a≥3
B、2≤a≤3
C、a≤-3或a≥-2
D、-3≤a≤-2
考點(diǎn):二次函數(shù)的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)的對(duì)稱(chēng)軸為x=a,再分函數(shù)在區(qū)間(2,3)內(nèi)是單調(diào)增函數(shù)、函數(shù)在區(qū)間(2,3)內(nèi)是單調(diào)減函數(shù)兩種情況,分別求得實(shí)數(shù)a的取值范圍,從而得出結(jié)論.
解答: 解:由于二次函數(shù)y=x2-2ax+1的對(duì)稱(chēng)軸為x=a,
若y=x2-2ax+1在區(qū)間(2,3)內(nèi)是單調(diào)增函數(shù),則有a≤2.
若y=x2-2ax+1在區(qū)間(2,3)內(nèi)是單調(diào)減函數(shù),則有a≥3.
故選:A.
點(diǎn)評(píng):本題主要考查二次函數(shù)的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的是( 。
①橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,則b=c(c為半焦距).
②雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點(diǎn)到漸近線(xiàn)的距離為b.
③已知拋物線(xiàn)y2=2px上兩點(diǎn)A(x1,y1),B(x2,y2)且OA⊥OB(O為原點(diǎn)),則y1y2=-p2
A、②③B、①C、①②D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式是an=n2sin(
2n+1
2
π),則a1+a2+a3+…+a2014=( 。
A、
2013×2013
2
B、2013×1007
C、2014×1007
D、2015×1007

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若a2+b2=2014c2,則
tanC
tanA
+
tanC
tanB
=( 。
A、
2
2013
B、
1
2013
C、
2
2014
D、
1
2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下命題:
①?x∈R,有x4>x2
②?α∈R,使得sin3α=3sinα;
③?a∈R,對(duì)?x∈R,使x2+2x+a<0.
其中正確的有( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
1-x
+
x+5
的最大值為M,最小值為m,則
M
m
的值為( 。
A、
1
4
B、
1
2
C、
2
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若矩陣A有特征值λ1=2,λ2=-1,它們對(duì)應(yīng)的特征向量分別為
α1
=
1
0
α2
=
0
1

(1)求矩陣A及逆矩陣A-1
(2)若
β
=
1
16
,試求A100
β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d<0,設(shè)bn=(
1
2
 an,又已知b1+b2+b3=
21
8
,b1•b2•b3=
1
8
,求數(shù)列{an}的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
2
+
y2
b2
=1(b>0)的右焦點(diǎn)為F,F(xiàn)(1,0)
(1)求b的值
(2)過(guò)點(diǎn)(-2,0)作直線(xiàn)L與橢圓交于A、B兩點(diǎn),線(xiàn)段AB中點(diǎn)為M,|MF|=
53
3
,求直線(xiàn)L方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案