已知的值分別為(   )

    A.            B.5,2              C.         D.-5,-2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


    交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反

映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T.其

范圍為[0,10],分別有五個(gè)級(jí)別:T∈[0,2)暢通;

T∈[2,4)基本暢通; T∈[4,6)輕度擁堵; T∈[6,

8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢?/p>

    晚高峰時(shí)段(T≥2),從某市交通指揮中心選

取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪

制的部分直方圖如圖所示.

    (I)請(qǐng)補(bǔ)全直方圖,并求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范胃饔卸嗌賯(gè)?

    (Ⅱ)用分層抽樣的方法從交通指數(shù)在[4,6),[6,8),[8,l0]的路段中共抽取6個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);

    (Ⅲ)從(Ⅱ)中抽出的6個(gè)路段中任取2個(gè),求至少一個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知三點(diǎn)P(5,2)、F1(-6,0)、F2(6,0)。

(1)求以F1、F2為焦點(diǎn)且過點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)P、F1、F2關(guān)于直線yx的對(duì)稱點(diǎn)分別為、、,求以、為焦點(diǎn)且過     點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知集合,從集合中任選三個(gè)不同的元素組成集合,則能夠滿足的集合的概率為=          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)是空間向量,則 “,”是“共面”的(   )

A.充分非必要條件   B.必要非充分條件   C.充要條件   D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知直線m過點(diǎn)O(0,0,0),其方向向量是=(1,1,1),則點(diǎn)Q(3,4,5)到直線m的距離是(   )

A.1            B.             C.                 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知向量,則

A 充分而不必要條件    B必要而不充分條件      C充要條件   D既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


甲,乙,丙,丁四人參加一家公司的招聘面試。公司規(guī)定面試合格者可簽約。甲、乙面試合格就簽約;丙,丁面試都合格則一同簽約,否則兩人都不簽約。設(shè)每人面試合格的概率都是,且面試是否合格互不影響。求:

(1)至少有三人面試合格的概率;

(2)恰有兩人簽約的概率;

(3)簽約人數(shù)的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 已知數(shù)列,設(shè),數(shù)列.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若數(shù)列的前項(xiàng)和為,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案