(本小題滿分12分)

    某網(wǎng)站就觀眾對(duì)2010年春晚小品類節(jié)目的喜愛程度進(jìn)行網(wǎng)上調(diào)查,其中持各種態(tài)度的人數(shù)如下表:

喜愛程度

喜歡

一般

不喜歡

人數(shù)

560

240

200

   (1)現(xiàn)用分層抽樣的方法從所有參與網(wǎng)上調(diào)查的觀眾中抽取了一個(gè)容量為n的樣本,已知從不喜歡小品的觀眾中抽取的人數(shù)為5人,則n的值為多少?

   (2)在(1)的條件下,若抽取到的5名不喜歡小品的觀眾中有2名為女性,現(xiàn)將抽取到的5名不喜歡小品的觀眾看成一個(gè)總體 ,從中任選兩名觀眾,求至少有一名為女性觀眾的概率.

 

【答案】

解:(1)采有分層抽樣的方法,樣本容量與總體容量的比為   2分

    則不喜愛小品觀眾應(yīng)抽取

        5分

   (2)由題意得,女性觀眾抽取2人,男性觀眾抽取3人,

    設(shè)女性觀眾為,男性觀眾為

    則從5位不喜愛小品的觀眾中抽取兩名觀眾有10種可能:

      8分

    其中抽取兩名觀眾中至少有一名為女性觀眾有7種可能:

       10分

    所以從5位不喜愛小品的觀眾中抽取兩名觀眾,至少有一名為女性觀眾的概率為 

    ……12分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案