已知是定義在上的奇函數(shù),且當(dāng)時(shí)不等式成立,若, ,則大小關(guān)系是(    )

A、     B.    C.      D.

 

【答案】

A

【解析】

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011313213987084500/SYS201301131322234333547663_DA.files/image001.png">是定義在上的奇函數(shù),且當(dāng)時(shí)不等式成立,即可知y=xf(x)在x>0上的導(dǎo)數(shù)大于零,可知函數(shù)遞增,并且在x<0時(shí),函數(shù)應(yīng)該是遞增的,那么因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011313213987084500/SYS201301131322234333547663_DA.files/image005.png">>1,0<<1, =-2,結(jié)合函數(shù)性質(zhì)可知<-<<0,那么利用單調(diào)遞增性得到結(jié)論選A.

考點(diǎn):本試題主要考查了函數(shù)的奇偶性和函數(shù)單調(diào)性的綜合運(yùn)用。

點(diǎn)評(píng):解決該試題的關(guān)鍵是根據(jù)得到函數(shù)y=xf(x)在給定區(qū)間是遞增區(qū)間,利用奇偶性,得到對(duì)稱區(qū)間x<0上遞增的,來比較大小。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù). 當(dāng)a,b∈[-1,1],且a+b≠0時(shí),有
f(a)+f(b)a+b
>0
成立.
(Ⅰ)判斷函f(x)的單調(diào)性,并證明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1對(duì)所有x∈[-1,1],b∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意實(shí)數(shù)a,b都有f(a•b)=af(b)+bf(a),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆云南省高一上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知函數(shù)是定義在上的奇函數(shù),且,

(1)確定函數(shù)的解析式;

(2)用定義證明上是增函數(shù);

(3)解不等式.

【解析】第一問利用函數(shù)的奇函數(shù)性質(zhì)可知f(0)=0

結(jié)合條件,解得函數(shù)解析式

第二問中,利用函數(shù)單調(diào)性的定義,作差變形,定號(hào),證明。

第三問中,結(jié)合第二問中的單調(diào)性,可知要是原式有意義的利用變量大,則函數(shù)值大的關(guān)系得到結(jié)論。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三三月月考數(shù)學(xué)(理)試卷 題型:選擇題

已知函數(shù)是定義在R上的奇函數(shù),且,在[0,2]上是增函

數(shù),則下列結(jié)論:

(1)若,則;[來源:Z§xx§k.Com]

(2)若

(3)若方程在[-8,8]內(nèi)恰有四個(gè)不同的根,則;

其中正確的有(     )

A.0個(gè)              B.1個(gè)             C.2個(gè)               D.3個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知是定義在上的不恒為零的函數(shù),且對(duì)于任意實(shí)數(shù)都有, 則

(A)是奇函數(shù),但不是偶函數(shù)         (B)是偶函數(shù),但不是奇函數(shù)

(C)既是奇函數(shù),又是偶函數(shù)         (D)既非奇函數(shù),又非偶函

查看答案和解析>>

同步練習(xí)冊(cè)答案